Muutke küpsiste eelistusi

E-raamat: Large Outdoor Fire Dynamics

(National Institute for Land and Infrastructure Management, Japan)
  • Formaat: 414 pages
  • Ilmumisaeg: 28-Dec-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000811957
  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 414 pages
  • Ilmumisaeg: 28-Dec-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000811957

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Large Outdoor Fire Dynamics provides the essential knowledge for the hazard evaluation of large outdoor fires, including wildland, WUI (wildland-urban interface), and urban fires. The spread of outdoor fires can be viewed as a successive occurrence of physical and chemical processes solid fuel combustion, heat transfer to surrounding combustibles, and ignition of heated combustibles which are explained herein. Engineering equations frequently used in practical hazard analyses are derived and then integrated to implement a computational code predicting fire spread among discretely distributed combustibles. This code facilitates learning the procedure of hazard evaluation for large outdoor fires.

Chapters cover underlying assumptions for analyzing fire spread behavior in large outdoor fires, namely, wind conditions near the ground surface and fundamentals of heat transfer; the physical mechanism of fire spread in and between combustibles, specifically focusing on fire plumes (both reacting and non-reacting) and firebrand dispersal; and the spatial modeling of 3D objects and developing the computational framework for predicting fire spread.

The book is ideal for engineers, researchers, and graduate students in fire safety as well as mechanical engineering, civil engineering, disaster management, safety engineering, and planning. Companion source codes are available online.
Preface xiii
Nomenclature xv
1 Introduction
1(10)
1.1 Large outdoor fires
1(4)
1.1.1 Definition
1(1)
1.1.2 Examples
2(3)
1.2 Scope of this book
5(6)
2 Wind
11(18)
2.1 Surface wind
12(6)
2.1.1 Stratified structure of the atmosphere
12(1)
2.1.2 Geostrophic and surface winds
13(3)
2.1.3 Vertical wind velocity profile in the atmospheric boundary layer
16(2)
2.2 Statistical features of wind
18(4)
2.2.1 Characteristic values at a specific location
19(2)
2.2.2 Time variation at a specific site
21(1)
2.3 Topographic effects
22(7)
2.3.1 Effect of terrain
23(1)
(1) Combined effect of terrain and solar radiation
23(1)
(2) Mechanical effect of terrain
24(1)
2.3.2 Effect of obstacles
25(4)
3 Heat transfer
29(60)
3.1 Heat conduction
30(19)
3.1.1 Heat conduction equation
30(2)
3.1.2 Thermo-physical properties
32(1)
(1) Thermal conductivity of wood materials
33(2)
(2) Specific heat of wood materials
35(1)
3.1.3 Steady conduction
36(1)
(1) Plane wall
37(1)
(2) Composite plane wall
37(3)
Worked example 3.1
40(1)
Worked example 3.2
40(2)
3.1.4 Transient conduction
42(1)
(1) Specified temperature boundary condition
42(1)
(2) Convection boundary condition
43(2)
(3) Specified heat flux boundary condition
45(1)
(4) Interface boundary condition
45(3)
Worked example 3.3
48(1)
3.2 Convective heat transfer
49(13)
3.2.1 Heat transfer coefficient
49(2)
3.2.2 Forced convection
51(1)
(1) Boundary layer approximation
51(2)
(2) Similarity law and dimensionless parameters
53(3)
(3) Mean Nusselt number
56(1)
Worked example 3.4
57(1)
3.2.3 Natural convection
58(1)
(1) Similarity law and dimensionless parameters
58(2)
(2) Mean Nusselt number
60(1)
Worked example 3.5
61(1)
3.3 Radiative heat transfer
62(27)
3.3.1 Thermal radiation
62(2)
3.3.2 Radiation intensity and emissive power
64(2)
3.3.3 Blackbody radiation
66(2)
3.3.4 Radiation properties of real surfaces
68(2)
3.3.5 Radiation by gases
70(3)
Worked example 3.6
73(1)
3.3.6 Radiative heat exchange between surfaces
74(2)
3.3.7 View factor
76(1)
Worked example 3.7
77(1)
3.3.8 Analytical solutions for view factors
78(1)
(1) dAi parallel to a rectangle Ai
78(1)
(2) dAi perpendicular to a rectangle Ai
79(1)
(3) dAi right opposite a circle Ai
79(1)
(4) dAi perpendicular to a circular cylinder Ai
79(2)
Worked example 3.8
81(1)
Worked example 3.9
82(1)
3.3.9 Point source models for radiative heat transfer
83(1)
(1) Single-point source model
84(1)
(2) Multi-point source model
85(1)
Worked example 3.10
85(4)
4 Fire sources
89(42)
4.1 Form of combustion
89(7)
4.1.1 Combustion of gaseous fuels
90(1)
4.1.2 Combustion of liquid and solid fuels
91(2)
(1) Mass loss rate (mass burning rate)
93(1)
(2) Combustion of charring materials
93(3)
4.2 Heat release in combustion
96(9)
4.2.1 Heat of combustion
96(4)
4.2.2 Estimation of the heat of combustion using chemical formulae
100(3)
Worked example 4.1
103(1)
4.2.3 Estimation of the heat of combustion during incomplete combustion using equivalent ratio
103(2)
Worked example 4.2
105(1)
4.3 Fire source in wildland fires
105(11)
4.3.1 Type and structure of fuels in wildland fires
106(4)
4.3.2 Transient burning process of individual fuel components
110(3)
Worked example 4.3
113(1)
4.3.3 Combustion of homogeneous porous fuel
114(2)
4.4 Fire source in urban fires
116(15)
4.4.1 Fuels in compartment fires
116(1)
4.4.2 Development process of a compartment fire
117(3)
4.4.3 Fully developed compartment fire
120(1)
(1) Mass loss rate (mass burning rate)
121(2)
(2) Mass flow rate due to ventilation
123(1)
(3) Heat release rate (HRR)
124(1)
(4) Heat loss rate
125(2)
Worked example 4.4
127(1)
4.4.4 Compartment gas temperature
128(1)
Worked example 4.5
129(2)
5 Fire plumes -- quiescent environment
131(54)
5.1 Basic characteristics of fire plumes
132(4)
5.1.1 Self-similarity
132(3)
5.1.2 Intermittency and domain segmentation
135(1)
5.2 Point fire source
136(19)
5.2.1 Governing equations
137(2)
(1) Plume regime
139(1)
(2) Flame regime
140(1)
5.2.2 Dimensional analysis
141(6)
5.2.3 Virtual origin
147(1)
5.2.4 Flame height
148(5)
Worked example 5.1
153(1)
Worked example 5.2
154(1)
Worked example 5.3
155(1)
5.3 Line fire source
155(11)
5.3.1 Governing equations
156(2)
5.3.2 Dimensional analysis
158(5)
5.3.3 Flame height
163(2)
Worked example 5.4
165(1)
5.4 Flame ejection from an opening (window flame)
166(10)
5.4.1 Thermal behavior along the trajectory
167(4)
5.4.2 Trajectory of the centerline
171(3)
5.4.3 Flame geometry
174(2)
Worked example 5.5
176(2)
Worked example 5.6
177(1)
5.5 Other fire sources
178(7)
5.5.1 Rectangular fire sources
178(2)
5.5.2 Group fires
180(2)
Worked example 5.7
182(3)
6 Fire plumes -- windy environment
185(34)
6.1 Basic characteristics of fire plumes
186(4)
6.1.1 Fuel heating
186(2)
6.1.2 Fresh air supply
188(2)
6.1.3 Advection of gas mixture
190(1)
6.2 Non-reacting fire plumes downwind of a point fire source
190(10)
6.2.1 Governing equations
190(3)
6.2.2 Dimensional analysis
193(4)
Worked example 6.1
197(1)
6.2.3 Trajectory
197(3)
Worked example 6.2
200(1)
6.3 Non-reacting fire plumes downwind of a line fire source
200(9)
6.3.1 Governing equations
201(1)
6.3.2 Dimensional analysis
202(3)
Worked example 6.3
205(1)
6.3.3 Trajectory
206(2)
Worked example 6.4
208(1)
6.4 Flame geometry
209(10)
6.4.1 Flame length
209(4)
6.4.2 Flame base drag
213(1)
6.4.3 Tilt angle
214(3)
Worked example 6.5
217(2)
7 Ignition and fire spread processes
219(40)
7.1 Ignition process of a solid
220(5)
7.2 Time to ignition
225(18)
7.2.1 Thermal thickness of a solid
225(3)
7.2.2 Ignition of a thermally thin solid under constant exposures
228(1)
(1) Convection boundary condition
229(1)
(2) External radiation boundary condition
230(2)
7.2.3 Ignition of a thermally thick solid under constant exposures
232(1)
(1) Convection boundary condition
232(2)
(2) Specified heat flux boundary condition
234(1)
(3) External radiation with heat loss from the surface
235(2)
(4) Engineering correlations
237(1)
(5) Critical conditions for ignition
238(1)
Worked example 7.1
238(3)
7.2.4 Ignition of a thermally thick solid under time-varying exposures
241(2)
Worked example 7.2
243(1)
7.3 Fire spread in a continuous fuel bed
243(4)
7.3.1 Rate of fire spread based on surface temperature
243(2)
7.3.2 Rate of fire spread based on incident heat flux
245(1)
Worked example 7.3
246(1)
7.4 Fire spread between discrete fuel objects
247(12)
7.4.1 Rate of fire spread
247(2)
7.4.2 Critical separation distance for fire spread
249(1)
Worked example 7.4
250(1)
7.4.3 Probability of fire spread
251(2)
(1) When both H and R follow a normal distribution
253(1)
(2) When both H and R follow a log-normal distribution
254(1)
7.4.4 Vulnerability curves for fire spread
255(4)
8 Firebrands
259(46)
8.1 Process of fire spread
260(7)
8.1.1 Process of fire spread (single fire source)
262(2)
Worked example 8.1
264(1)
8.1.2 Process of fire spread (multiple fire sources)
264(2)
Worked example 8.2
266(1)
8.2 Generation
267(12)
8.2.1 Shape and mass
271(3)
Worked example 8.3
274(2)
8.2.2 Quantity
276(3)
8.3 Dispersion
279(15)
8.3.1 Motion of a lofted firebrand (translation and rotation)
280(3)
(1) Equation of motion
283(3)
(2) Coordinate conversion by Euler angle
286(2)
(3) Coordinate conversion by quaternions
288(2)
8.3.2 Combustion of airborne firebrands
290(1)
8.3.3 Range of firebrand dispersal
291(3)
Worked example 8.4
294(1)
8.4 Ignition
294(11)
8.4.1 Factors affecting ignition
295(1)
(1) Deposited firebrands
295(2)
(2) Recipient fuel
297(1)
(3) Deposition of firebrands on fuel bed
297(1)
(4) Ambient environment
298(1)
8.4.2 Probability of ignition
299(1)
(1) Bernoulli trial
300(1)
(2) Logistic model
301(4)
9 Spatial data modeling
305(28)
9.1 Spatial coordinate system
307(6)
9.1.1 3D rectangular coordinate system
307(1)
9.1.2 Vector
308(1)
(1) Inner product
309(1)
(2) Outer product
310(2)
Worked example 9.1
312(1)
9.2 Description of a 3D object
313(5)
9.2.1 Surface model
313(2)
Worked example 9.2
315(1)
9.2.2 Multi-point model
316(2)
9.3 Geometric computations in 3D space
318(15)
9.3.1 Lines
318(1)
(1) Distance between a point and a line
319(1)
(2) Distance between lines
320(1)
Worked example 9.3
321(1)
Worked example 9.4
322(2)
9.3.2 Plane surfaces
324(1)
(1) Distance between a point and a plane surface
325(1)
(2) Intersection of a line and a polygon
326(2)
(3) Area of a polygon
328(3)
Worked example 9.5
331(2)
10 Fire spread simulation
333(36)
10.1 An overview of the model development history
333(5)
10.1.1 Development of predictive methods
334(1)
(1) Flame propagation in ideal combustible spaces
334(1)
(2) Fire spread in actual combustible spaces
335(2)
10.1.2 Presented simulation model
337(1)
10.2 Setup and execution of the simulation model
338(2)
10.2.1 Source code
338(1)
10.2.2 Setup of an execution environment
339(1)
10.2.3 Execution of the code
339(1)
10.3 Theoretical framework of the simulation model
340(17)
10.3.1 Overall structure
340(1)
10.3.2 INIT: data input and setup
341(1)
(1) INIT1: read from files
341(1)
(2) INIT2: objects
341(1)
(3) INIT3: adjacency
342(1)
(4) INIT4: from UTM coordinates to longitude and latitude
343(1)
10.3.3 NDAT: data update and output
343(1)
(1) NDAT: data status
343(1)
(2) OUTP: data output
344(1)
(3) RSLT: data summary
344(1)
10.3.4 FIRE: burning behavior of objects
345(1)
(1) HRR: heat release rate
345(2)
(2) HTRF: ignition due to external heating
347(1)
10.3.5 SPRD: fire spread behavior between objects
348(1)
(1) XRAD: flames
348(3)
(2) FPLM: fire plumes
351(2)
(3) SPOT: firebrands
353(4)
10.4 Case study
357(12)
10.4.1 Simulation conditions
357(2)
(1) Outline of the simulation: o.csv
359(1)
(2) Vertices of the fuel objects: v.csv
360(1)
(3) Face polygons composing combustible objects: p.csv
360(3)
10.4.2 Simulation results
363(6)
References 369(20)
Index 389
Keisuke Himoto, Dr.Eng., is a senior researcher at the National Institute for Land and Infrastructure Management in Tsukuba, Japan. His research interests cover a broad range of fire safety issues in the built environment but with a special focus on large outdoor fires. He is the developer of various fire-related computational models, including one of the first physics-based computational models for fire spread in densely-built urban areas.