Muutke küpsiste eelistusi

E-raamat: Laser Additive Manufacturing of High-Performance Materials

  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Apr-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662460894
  • Formaat - PDF+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Apr-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662460894

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering and mechanical engineering. This is a book for researchers, students, practicing engineers and manufacturing industry professionals interested in laser additive manufacturing and laser materials processing. Dongdong Gu is a Professor at College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), PR China.

1 Introduction 1(14)
1.1 Development History and Nomenclature of AM Processes
1(3)
1.1.1 Development History of AM Technology
1(2)
1.1.2 Nomenclature of Different AM Processes
3(1)
1.2 Basic Procedures of AM Process
4(2)
1.3 Advantages and Application Areas of AM Technology
6(2)
1.4 About This Book
8(3)
References
11(4)
2 Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms 15(58)
2.1 Classification of Laser AM Processes and Metallurgical Mechanisms
15(15)
2.1.1 Laser Sintering (LS)
16(4)
2.1.2 Laser Melting (LM)
20(3)
2.1.3 Laser Metal Deposition (LMD)
23(7)
2.2 Classes of Materials for AM and Processing Mechanisms
30(21)
2.2.1 For LM and LMD—Pure Metals Powder
30(2)
2.2.2 For LM and LMD—Alloys Powder
32(10)
2.2.3 For LS and LMD—Multi-Component Metals/Alloys Powder Mixture
42(6)
2.2.4 Metal Matrix Composites (MMCs)
48(3)
2.3 Material/Process Considerations and Control Methods
51(12)
2.3.1 General Physical Aspects and Design Strategies of Materials for AM
51(3)
2.3.2 Microstructural Properties of AM-Processed Parts
54(6)
2.3.3 Mechanical Properties and Performance Aspects of AM-Processed Parts
60(3)
2.3.4 Structure/Property Stability of AM-Processed Parts
63(1)
2.4 Summary
63(1)
References
64(9)
3 Novel Ti-Based Nanocomposites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Nanostructure and Performance 73(42)
3.1 Introduction
73(2)
3.2 Preparation of TiC/Ti Nanocomposite Powder for SLM
75(2)
3.3 General Introduction of Experimental Setup and Processing Procedures of SLM Work in This Book
77(3)
3.4 General Introduction of Experimental Procedures and Methods for Microstructures and Mechanical Properties Tests in This Book
80(4)
3.4.1 Metallographic Specimen Preparation and Examination
80(1)
3.4.2 Characterization of Constitutional Phases, Microstructural Features, and Chemical Compositions
81(1)
3.4.3 Mechanical Properties Testing
82(2)
3.5 Influence of SLM Processing Parameters on Densification, Growth Mechanism, and Wear Behavior TiC/Ti Nanocomposite Parts
84(11)
3.5.1 Influence of SLM Parameters on Constitutional Phases
84(1)
3.5.2 Influences of SLM Parameters on Surface Morphologies and Densification
84(3)
3.5.3 Influence of SLM Parameters on Microstructures and Formation Mechanisms
87(5)
3.5.4 Influence of SLM Parameters on Nanoindentation and Wear Behavior
92(3)
3.6 Influence of Nanoscale Reinforcement Content on SLM Processing of TiC/Ti Nanocomposite Parts
95(7)
3.6.1 Influence of TiC Nanocomposites Content on Densification Behavior
95(2)
3.6.2 Influence of TiC Nanoparticles Content on Microstructural Characteristics
97(2)
3.6.3 Influence of TiC Nanoparticles Content on Hardness and Wear Performance
99(3)
3.7 The Role of Nanopowder in SLM Processing of TiC/Ti Nanocomposite Parts
102(9)
3.7.1 The Role of Nanopowder in Densification Behavior
102(3)
3.7.2 The Role of Nanopowder in Microstructure Development
105(2)
3.7.3 The Role of Nanopowder in Wear and Tribological Property
107(1)
3.7.4 Influence of Nanopowder Characteristics on Densification Behavior and Microstructural Development
108(2)
3.7.5 Relationship of Densification, Microstructure, and Wear and Tribological Performance
110(1)
3.8 Conclusions
111(1)
References
112(3)
4 In Situ Ti—Si Intermetallic-Based Composites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Designed Materials and Laser-Tailored In Situ Formation 115(36)
4.1 Introduction
115(2)
4.2 Selective Laser Melting (SLM) of In Situ TiC/Ti5Si3 Composite Parts with Novel Reinforcement Architecture and Elevated Performance
117(17)
4.2.1 Ball Milling of SiC/Ti Powder System for SLM Process
117(1)
4.2.2 Formation Mechanism and Microstructural Development of In Situ TiC Reinforcement during SLM Processing of SiC/Ti Powder System
118(8)
4.2.3 Influence of SLM Processing Conditions on Densification, Microstructure, and Wear Behavior of In Situ TiC/Ti5Si3 Composite Parts
126(8)
4.3 Selective Laser Melting (SLM) of In Situ TiN/Ti5Si3 Composite Parts: Densification Mechanism, Microstructural Development, and Wear Property
134(14)
4.3.1 Ball Milling of Si3N4/Ti Powder System for SLM Process
134(1)
4.3.2 Influence of SLM Parameters on Constitutional Phases of In Situ TiN/Ti5Si3 Composite Parts
135(3)
4.3.3 Influence of SLM Parameters on Microstructures and Compositions of In Situ TiN/Ti5Si3 Composite Parts
138(4)
4.3.4 Influence of SLM Parameters on Densification Behavior of In Situ TiN/Ti5Si3 Composite Parts
142(3)
4.3.5 Influence of SLM Parameters on Microhardness and Wear Property of In Situ TiN/Ti5 Si3 Composite Parts
145(3)
4.4 Conclusions
148(1)
References
149(2)
5 In Situ WC-Cemented Carbide-Based Hardmetals by Selective Laser Melting (SLM) Additive Manufacturing (AM): Microstructure Characteristics and Formation Mechanisms 151(24)
5.1 Introduction
151(1)
5.2 Preparation of W—Ni—Graphite Powder System for SLM Process
152(2)
5.3 Effect of SLM Processing Parameters on Phase Evolution of WC-Based Hardmetals Parts Using CO2 Laser
154(2)
5.4 Effect of SLM Processing Parameters on Microstructure and Composition Development of WC-Based Hardmetals Parts Using CO2 Laser
156(6)
5.5 Formation Mechanisms and Conditions of In Situ WC Phase during SLM Process Using CO2 Laser
162(3)
5.6 Relationship of Processing Conditions, Microstructures, and Microhardness of SLM-Processed WC-Based Hardmetals Parts Using CO2 Laser
165(3)
5.7 Crystal Growth Mechanisms of In Situ WC in Selective Laser Melted W—C—Ni Ternary System Using Fiber Laser
168(4)
5.8 Conclusions
172(1)
References
172(3)
6 Nanoscale TiC Particle-Reinforced AlSi10Mg Bulk-Form Nanocomposites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Microstructures and Enhanced Properties 175(26)
6.1 Introduction
175(2)
6.2 Powder Preparation and SLM Process of TiC/AlSi10Mg Nanocomposites
177(1)
6.3 Phases Identification SLM-processed TiC/AlSi10Mg Nanocomposite Parts
177(2)
6.4 Effect of SLM Processing Parameters on Densification Behavior of TiC/AISi10Mg Nanocomposite Parts
179(3)
6.5 Effect of SLM Processing Parameters on Microstructural Evolution of TiC/AlSi10Mg Nanocomposite Parts
182(8)
6.6 Mechanical Performance of SLM-processed TiC/AlSi10Mg Nanocomposite Parts
190(8)
6.6.1 Dimensional Accuracy of SLM-processed TiC/AlSi10Mg Nanocomposite Parts
190(1)
6.6.2 Hardness and Wear Performance of SLM-processed TiC/AlSi10Mg Nanocomposite Parts
191(4)
6.6.3 Tensile Properties of SLM-processed TiC/AlSi10Mg Nanocomposite Parts
195(3)
6.7 Conclusions
198(1)
References
198(3)
7 Novel Aluminum Based Composites by Selective Laser Melting (SLM) Additive Manufacturing (AM): Tailored Formation of Multiple Reinforcing Phases and its Mechanisms 201(22)
7.1 Introduction
201(3)
7.2 Preparation and SLM Processing of SiC/AlSi10Mg Composite Powder
204(2)
7.3 Phases Identification SLM-Processed Al-based Composite Parts from SiC/AlSi10Mg Powder System
206(1)
7.4 Microstructures and Compositions of Al-based Composite Parts Processed by SLM of SiC/AlSi10Mg Powder
207(5)
7.5 Densification Behavior of Al-based Composite Parts Processed by SLM of SiC/AlSi10Mg Powder
212(2)
7.6 Hardness and Wear Performance of Al-Based Composite Parts Processed by SLM of SiC/AlSi10Mg Powder
214(5)
7.7 Conclusions
219(1)
References
220(3)
8 Particle-Reinforced Cu Matrix Composites by Direct Metal Laser Sintering (DMLS) Additive Manufacturing (AM): Interface Design, Material Optimization, and Process Control 223(50)
8.1 Introduction
223(2)
8.2 Preparation of (WC—Co)p/Cu Composite Powder System for DMLS Process
225(2)
8.2.1 Preparation of Submicron WC—Co Composite Powder
225(1)
8.2.2 Preparation of (WC—Co)p/Cu Composite Powder System
226(1)
8.3 Interface Design and Processing Conditions of Submicron WC—Co Particle-Reinforced Cu Matrix Composites Prepared by Direct Metal Laser Sintering (DMLS)
227(14)
8.3.1 Interface Design and Formation Mechanism of (WC—Co) /Cu Composite System during DMLS
227(8)
8.3.2 Influence of DMLS Processing Parameters on Microstructural and Mechanical Properties of (WC—Co) /Cu Composite Parts
235(6)
8.4 Influence of Reinforcement Weight Fraction on Microstructure and Properties of (WC—Co)p/Cu Composite Parts Prepared by DMLS
241(8)
8.4.1 Effect of Reinforcement Content on Particle Dispersion State and Microhardness and its Distribution
241(1)
8.4.2 Effect of Reinforcement Content on Particle-Matrix Interfacial Microstructure
242(2)
8.4.3 Effect of Reinforcement Content on Tensile Property and Fracture Surface Morphology
244(1)
8.4.4 Influencing Mechanisms of Reinforcement Content on Microstructural and Mechanical Properties
245(4)
8.5 Influence of Processing Parameters on Particle Dispersion in (WC—Co)p/Cu Composite Parts Prepared by DMLS
249(8)
8.5.1 Process Map for Particle Dispersion in DMLS-processed (WC—Co)p/Cu Composites
249(1)
8.5.2 Microstructural Development of Particle Dispersion in DMLS-Processed (WC—Co)/Cu Composites
250(3)
8.5.3 Mechanisms of Particle Dispersion in DMLS-processed (WC—Co)p/Cu Composites at Different Processing Parameters
253(4)
8.6 The Role of Rear Earth (RE) La2O3 Addition in DMLS Processing of Submicron (WC—Co)p/Cu Composite Parts
257(13)
8.6.1 Phase Identification of DMLS-processed (WC—Co)p/Cu Composites Containing Various Contents of La2O3
257(2)
8.6.2 Densification Response of DMLS-processed (WC-Co)p/Cu Composites Containing Various Contents of La2O3
259(1)
8.6.3 Particle Dispersion and Particle Morphology of DMLS-processed (WC—Co)p/Cu Composites Containing Various Contents of La2O3
260(2)
8.6.4 Etched Microstructure of Metal Matrix of DMLS-processed (WC—Co)/Cu Composites Containing Various Contents of La2O3
262(2)
8.6.5 Functions of RE Element in DMLS of Particle-Reinforced MMCs
264(6)
8.7 Conclusions
270(1)
References
271(2)
9 Nano/Micron W—Cu Composites by Direct Metal Laser Sintering (DMLS) Additive Manufacturing (AM): Unique Laser-Induced Metallurgical Behavior of Insoluble System 273(30)
9.1 Introduction
273(2)
9.2 Preparation of Nano/Micron W—Cu Composite Powder System for DMLS Process
275(3)
9.2.1 Preparation of Nanocrystalline W—Cu Composite Powder
275(2)
9.2.2 Preparation of Nano/Micron (W—Cu)/Cu Composite Powder System
277(1)
9.3 Effects of Processing Parameters on Consolidation and Microstructure of Nano/Micron W—Cu Component Processed by DMLS
278(12)
9.3.1 Mechanisms of Powder Melting and Densification during DMLS of Nano/Micron W—Cu Composite Powder
278(3)
9.3.2 Microstructural Characteristics of Nano/Micron W—Cu Components Processed by DMLS
281(2)
9.3.3 Process Control and its Mechanisms for DMLS of W—Cu Components
283(7)
9.4 Influence of Cu-Liquid Content on Densification and Microstructure of Nano/Micron W—Cu Composites Prepared by DMLS
290(9)
9.4.1 Densification and Microstructure of DMLS-Processed W—Cu Composites with Variation of Cu-Liquid Contents
290(4)
9.4.2 The Role of Cu-Liquid Content in Densification Behavior and Microstructural Development of DMLS-Processed W—Cu Composites
294(3)
9.4.3 Formation Mechanism of a Novel W-rim/Cu-Core Structure During DMLS of W—Cu Composite System
297(2)
9.5 Conclusions
299(1)
References
300(3)
10 Summary and Prospective View 303
10.1 Summary of Main Work and Findings
303(3)
10.2 Prospective View
306(2)
References
308
Prof. Dr. Dongdong Gu is a professor of the College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics.