Muutke küpsiste eelistusi

E-raamat: Laser Heterodyning

  • Formaat: PDF+DRM
  • Sari: Springer Series in Optical Sciences 149
  • Ilmumisaeg: 18-Sep-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642023385
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Series in Optical Sciences 149
  • Ilmumisaeg: 18-Sep-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642023385

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature - preserving phase information about optical wave in the electrical signal of the photo-detector - finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and lidars, microscopy and other areas. The reader may be surprised by the variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.



Laser Heterodyning offers applications in various domains of applied optics and optoelectronics. This volume offers detailed explanations of the phenomena, and is a valuable resource for researches, postgraduates and students involved with applied optics.

1 Principles of Optical Heterodyning 1
1.1 Heterodyne Detection of Regular Signals
1
1.1.1 Interference of Optical Fields at the Detector Sensitive Area
1
1.1.2 Spectrum of the Output Signal Under Regular Modulation of Optical Fields
4
1.1.3 Optimal Conditions for Wavefronts
7
1.1.4 Siegman Antenna Theorem
11
1.1.5 Practical Schemes of Wavefront Matching
15
1.1.6 Tolerances on Aberrations of Optical Systems
23
1.2 Heterodyne Detection of Random Signals
30
1.2.1 Spectrum of the Photocurrent
30
1.2.2 Heterodyning with Partial Spatial Coherence of Optical Waves
36
1.3 Sensitivity of an Ideal Heterodyne Receiver
40
1.3.1 Sensitivity of an Ideal Heterodyne Receiver to Narrow-Band Laser Signals
40
1.3.2 Sensitivity of an Ideal Heterodyne Receiver to Wide-Band Optical Signals
45
References
48
2 Laser Heterodyne Spectroscopy 51
2.1 Laser Heterodyne Spectroscopy of Scattered Radiation
51
2.1.1 Historical Introduction
51
2.1.2 The Principles of Heterodyne and Homodyne Spectroscopy
52
2.1.3 Basics of Single Scattering
58
2.1.4 Finite Width of Laser Spectrum
65
2.1.5 Signal-to-Noise Ratio in Spectroscopic Measurements
71
2.1.6 Some Experimental Results
77
2.2 High-Frequency Heterodyne Spectroscopy
81
2.2.1 Historical Introduction
81
2.2.2 Secondary Frequency Standards with CO2-Lasers
82
2.2.3 High-Frequency Mixing Devices
85
2.2.4 Measuring Frequencies of Molecular Transitions
90
2.2.5 Optical Frequency Synthesis Spectroscopy
90
2.3 Frequency-Modulation Spectroscopy
94
References
101
3 Laser Heterodyne Radars and Lidars 105
3.1 Introduction
105
3.2 Heterodyne Photoreceivers
106
3.2.1 Basic Types of Heterodyne Photodetectors
106
3.2.2 Sensitivity of Photoresistors and Photodiodes in the Heterodyne Mode
108
3.3 Laser Heterodynes
122
3.4 Atmospheric Turbulence
124
3.5 Probability of Detection and False Alarm
132
3.5.1 Signal Statistics and Input Circuits of Heterodyne Receivers
132
3.5.2 Detection of Regular Continuous Gaussian Signals without Accumulation
136
3.5.3 Detection of Regular Continuous Gaussian Signals with Accumulation
138
3.5.4 Non-Gaussian Signals
144
3.5.5 Experimental Results
148
3.6 Retrieving Information from Heterodyne Signals
150
3.6.1 Measuring Target Velocity
150
3.6.2 Synthetic Aperture Method
155
3.6.3 Synthetic Aperture: Experimental Results
170
3.6.4 Linear Frequency Modulation Method
175
3.6.5 Linear Frequency Modulation: Experimental Results
179
3.7 Lidars
180
3.7.1 Range Selectivity in Heterodyne Lidars
181
3.7.2 Wind Speed Vector Measurement
186
References
188
4 Laser Heterodyne Radiometers 191
4.1 Principles of Laser Heterodyne Radiometers
191
4.1.1 Basic Scheme of a Laser Heterodyne Radiometer
191
4.1.2 Equivalent Noise Temperature of a Radiometer
193
4.1.3 Sensitivity and Resolution of a Radiometer
200
4.1.4 Basic Types of Laser Heterodyne Radiometers
209
4.2 Characteristics of Laser Heterodyne Radiometers
213
4.2.1 Sensitivity and Signal-to-Noise Ratio
213
4.2.2 Resolution
217
4.2.3 Applications of Laser Heterodyne Radiometers
218
4.3 Laser Heterodyne Interferometers
220
4.3.1 Introduction
220
4.3.2 Interference Method of Measuring Angular Dimensions of Astrophysical Objects
221
4.3.3 Principle of Operation and Sensitivity of Laser Heterodyne Interferometer
226
4.3.4 Phase-Modulation Interferometer
231
4.3.5 Laser Heterodyne Correlation Interferometer
235
4.3.6 Some Experimental Results
238
References
240
5 Laser Heterodyne Interferometry and Polarimetry 243
5.1 Laser Heterodyne Interferometry
245
5.1.1 Precise Position Measurements
245
5.1.2 Surface Profilometry
248
5.1.3 Glass Thickness Measurements
251
5.2 Heterodyne Polarimetry of Glass Birefringence
255
5.2.1 Introduction
255
5.2.2 Principles of the Cross-Polarized Technique
256
5.2.3 Experimental Results
262
5.3 Kerr Polarimetry
265
5.3.1 Introduction
265
5.3.2 Theoretical Basics of the Magneto-Optical Kerr Effect
268
5.3.3 Experimental Results
273
5.3.4 Laser Heterodyne Kerr Microscopy
275
5.4 Surface Polarimetry
279
5.4.1 Introduction
279
5.4.2 Principle of Surface Polarimetry
280
5.4.3 Principle of Measuring Critical Dimensions
282
5.4.4 Experimental Results
287
5.4.5 Measuring Critical Dimensions of Sub-Wavelength Structures
290
References
303
6 Heterodyne Imaging and Beam Steering 307
6.1 Heterodyne Scanning
307
6.1.1 Introduction
307
6.1.2 Theory of Heterodyne Scanning
308
6.1.3 Laser Heterodyne Scanning Microscopy
316
6.1.4 Laser Heterodyne Differential Microscopy
320
6.1.5 Laser Heterodyne Phase-Contrast Microscopy and Super-Resolution
326
6.2 Adaptive Heterodyne Imaging
332
6.2.1 Principle of Adaptive Imaging
332
6.2.2 Adaptation with the Heterodyne Receiver Signal
333
6.3 Laser Heterodyne Phase Arrays
342
6.3.1 Adaptive Focusing
342
6.3.2 Beam Steering
347
References
350
Index 353
Vladimir Protopopov is Leading Research Scientist at the Moscow State University and Principal Engineer at Samsung Electronics Co., Mechatronics Center. He received his Ph.D. and Dr.Sc. degrees in the fields of radio-physics and applied optics. He is a co-author of other books: «Methods of Processing of Optical Fields», «Laser Radars», and «Infrared Laser Radars» published in Russia, United States and Yugoslavia. Apart of the visible optics domain, his research interests include X-ray optics where he is widely known as a pioneer of the depth-graded multilayer optical elements. He is the author of some sixty scientific articles and dozens of patents.