Muutke küpsiste eelistusi

E-raamat: Laser Physics and Spectroscopy

  • Formaat: 212 pages
  • Ilmumisaeg: 19-Feb-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429960772
  • Formaat - PDF+DRM
  • Hind: 62,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 212 pages
  • Ilmumisaeg: 19-Feb-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429960772

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this book emphasis is laid on laser including its operation, different types, properties like coherence and monochromaticity, beam propagation, theoretical treatment of atom-field interaction, semi-classical laser theory, non-linear effects, quantum properties, photon concept and coherent states etc.

Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

Arvustused

"The first chapter, the longest, very nicely summarizes the physics of lasers. The remaining nine individually discuss important topics relevant to lasers. There are many helpful diagrams and chapter-end problem sets."

~Albert Claus, Professor Emeritus of Physics, Loyola University Chicago

Chapter 1 Introduction to Laser
1(50)
1.1 Historical background
1(1)
1.2 Spontaneous and Stimulated Emission and Absorption
1(4)
1.3 Stimulated emission as a process of amplification
5(1)
1.4 Population Inversion for Amplification
5(1)
1.5 Feedback for sustained amplification
6(1)
1.6 Laser components
6(1)
1.7 Properties of laser radiation
7(4)
1.7.1 Temporal Coherence
7(2)
1.7.2 Spatial Coherence
9(1)
1.7.3 Directionality
10(1)
1.8 Types of lasers
11(12)
1.8.1 CW and Pulse Lasers
11(1)
1.8.2 Gas Laser: Helium Neon Laser
12(2)
1.8.3 Semiconductor Laser
14(4)
1.8.4 Quantum Well Laser
18(1)
1.8.5 Dye Laser
19(2)
1.8.6 Solid State Ruby Laser
21(2)
1.9 Laser Beam Propagation
23(10)
1.9.1 Modes in Optical Resonator
23(1)
1.9.2 Mode broadening and photon lifetime
24(2)
1.9.3 Quality Factor
26(1)
1.9.4 Cavity Finesse
26(1)
1.9.5 Gaussian Line Shape of Laser Beam
27(2)
1.9.6 Higher order Laser Modes
29(1)
1.10 Elementary Laser theory based on Rate Equations
30(1)
1.10.1 Three-level rate equation
30(1)
1.10.2 Population inversion in the steady state
31(2)
1.11 Operation of Pulse Laser
33(8)
1.11.1 Q-switching
33(5)
1.11.2 Mode Locking
38(3)
1.12 Non-linear effects in Laser Physics
41(10)
1.12.1 Nonlinear optical effects
41(1)
1.12.2 Non-linear polarization
42(1)
1.12.3 Second Harmonic Generation
42(2)
1.12.4 Theoretical treatment
44(2)
1.12.5 Optical Parametric Oscillator
46(3)
Problems
49(1)
Further reading
50(1)
Chapter 2 Semi-classical Theory of Atom-Field Interaction
51(14)
2.1 Semi-classical treatment
51(1)
2.2 Atom Field Interaction
51(2)
2.3 Weak Field Case
53(1)
2.4 Broadening of spectral lines
54(5)
2.4.1 Natural broadening
55(1)
2.4.2 Collision Broadening
56(2)
2.4.3 Doppler broadening
58(1)
2.5 Strong Field Case: Rabi Oscillation
59(6)
Problems
63(1)
Further reading
64(1)
Chapter 3 Density Matrix Equations
65(16)
3.1 The Density matrix
65(1)
3.2 Density matrix of a statistical ensemble
66(1)
3.3 Decay phenomena and Density matrix equations for two-level atoms
67(2)
3.4 Vector model solution of density matrix equations
69(2)
3.5 Moving atoms in a progressive wave
71(10)
Problems
78(2)
Further reading
80(1)
Chapter 4 Saturation Absorption Spectroscopy
81(17)
4.1 Moving atoms in a standing wave
81(4)
4.2 Lamb dip
85(1)
4.3 Crossover resonance dip
85(1)
4.4 Closed transitions and Optical Pumping
86(2)
4.5 Atomic energy levels of Rubidium
88(3)
4.6 Saturation Spectroscopy Experiment
91(7)
Problems
96(1)
Further reading
97(1)
Chapter 5 Semi classical Theory of Laser Action
98(21)
5.1 Self-consistent theory of laser
98(1)
5.2 Maxwell's field equations
98(1)
5.3 Expansion in normal modes
99(1)
5.4 Lamb's self-consistency equations
100(3)
5.5 Mode Polarization for two level atoms in a cavity
103(1)
5.6 Rate equation approximation
104(2)
5.7 Hole Burning
106(1)
5.8 Non-linear Polarization
107(2)
5.9 Intensity and Frequency of a Single Mode Laser
109(4)
5.10 Two mode operation
113(1)
5.11 Multimode operation
114(5)
Problems
118(1)
Further reading
118(1)
Chapter 6 Quantum Theory of Radiation
119(16)
6.1 Quantum nature of radiation
119(1)
6.2 Maxwell's equations of classical electrodynamics in free space
119(2)
6.3 Solution of the wave equation
121(1)
6.4 Confinement of radiation in a cavity
122(2)
6.5 Quantization of the radiation field
124(1)
6.6 Single Mode Radiation Field
125(2)
6.7 The Photon concept
127(1)
6.8 Multimode Radiation Field
128(1)
6.9 Coherent State
129(6)
Problems
134(1)
Further reading
134(1)
Chapter 7 Quantum Theory of Atom Field Interaction
135(15)
7.1 Atom-Field Hamiltonian in terms of Pauli operators
135(1)
7.2 Absorption and emission process
136(2)
7.3 Dressed States
138(4)
7.4 Rate equation treatment of atom field interaction
142(3)
7.5 Theory of spontaneous emission: Wigner-Weisskopf model
145(5)
Problems
149(1)
Further reading
149(1)
Chapter 8 Doppler-free spectroscopy with laser
150(15)
8.1 Introduction
150(1)
8.2 Density matrix equations for three-level system
151(1)
8.3 Perturbation solution
152(1)
8.4 Doppler free two-photon spectroscopy
153(2)
8.5 Dark state and Coherent Population Trapping
155(2)
8.6 Electromagnetically Induced Transparency
157(4)
8.7 EIT and Optical Pumping in multilevel atoms
161(4)
Problem
164(1)
Further reading
164(1)
Chapter 9 Laser Cooling and Bose Einstein Condensation
165(22)
9.1 Basic phenomena of atom cooling and trapping
165(3)
9.1.1 Temperature
165(1)
9.1.2 Kinetics of atomic motion
166(1)
9.1.3 Cooling and trapping of gas phase atoms
166(2)
9.2 Doppler Cooling
168(1)
9.3 Force acting on the atom in a laser field
169(2)
9.4 Magnetic Trapping
171(2)
9.4.1 Anti-Helmholz Configuration
172(1)
9.5 Magneto-Optical Trap
173(4)
9.5.1 MOT operation
173(1)
9.5.2 Cooling and Trapping Force
174(1)
9.5.3 Experimental setup of the MOT
174(2)
9.5.4 Image analysis
176(1)
9.6 Bose Einstein Condensation
177(10)
9.6.1 Condensation of Boson
177(1)
9.6.2 Boson and Fermion
177(1)
9.6.3 Cold Atom as a de Broglie Wave
177(1)
9.6.4 Quantum Identity Crisis
178(1)
9.6.5 Theoretical aspects
179(4)
9.6.6 Evaporative Cooling
183(1)
9.6.7 Observation and application of BEC
184(1)
9.6.8 Applications
185(1)
Problems
186(1)
Further reading
186(1)
Chapter 10 Lasers in Quantum Information Science
187
10.1 Quantum entanglement
187(2)
10.1.1 EPR Paradox
187(1)
10.1.2 Bell's inequality
187(2)
10.2 Quantum teleportation
189(1)
10.2.1 Qubits
189(1)
10.2.2 Procedure
189(1)
10.3 Quantum Computers
190
10.3.1 Qubits in Quantum Computation
190(1)
10.3.2 Physical realization of Quantum Computer
190(3)
Problems
193(1)
Further Reading
193
Pradip Narayan Ghosh is a former Professor, University of Calcutta and former President of Indian Physical Society and Indian Association of Physics Teachers, West Bengal. He is one of the first in India who could set up a laboratory on Laser Cooling of Atoms. He is also the recipient of Mother Teresa Lifetime Achievement Award.