Muutke küpsiste eelistusi

E-raamat: Laser Spectroscopy 2: Experimental Techniques

  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Jan-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662446416
  • Formaat - PDF+DRM
  • Hind: 92,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Jan-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662446416

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers), coherent matter waves, Doppler-free Fourier spectroscopy, interference spectroscopy, quantum optics and gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers.- Nonlinear Spectroscopy.- Laser Raman Spectroscopy.- Laser Spectroscopy in Molecular Beams.- Optical Pumping and Double-Resonance Techniques.- Time-Resolved Laser Spectroscopy.- Coherent Spectroscopy.- Laser Spectroscopy of Collision Processes.- New Developments in Laser Spectroscopy.- Applications of Laser Spectroscopy.- Solutions.

Wolfgang Demtröder, Univ. Kaiserslautern, Germany. Most renowned expert in spectroscopy.
1 Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers
1(82)
1.1 Advantages of Lasers in Spectroscopy
1(6)
1.2 High-Sensitivity Methods of Absorption Spectroscopy
7(23)
1.2.1 Enhancement of Absorption in External Cavities
7(2)
1.2.2 Frequency Modulation
9(6)
1.2.3 Intracavity Laser Absorption Spectroscopy ICLAS
15(8)
1.2.4 Cavity Ring-Down Spectroscopy (CRDS)
23(7)
1.3 Direct Determination of Absorbed Photons
30(16)
1.3.1 Fluorescence Excitation Spectroscopy
31(4)
1.3.2 Photoacoustic Spectroscopy
35(6)
1.3.3 Optothermal Spectroscopy
41(5)
1.4 Ionization Spectroscopy
46(10)
1.4.1 Basic Techniques
46(3)
1.4.2 Pulsed Versus CW Lasers for Photoionization
49(3)
1.4.3 Sensitivity of the Different Techniques
52(1)
1.4.4 Resonant Two-Photon Ionization (RTPI) Combined with Mass Spectrometry
53(2)
1.4.5 Thermionic Diode
55(1)
1.5 Optogalvanic Spectroscopy
56(3)
1.6 Velocity-Modulation Spectroscopy
59(1)
1.7 Laser Magnetic Resonance and Stark Spectroscopy
60(4)
1.7.1 Laser Magnetic Resonance
61(2)
1.7.2 Stark Spectroscopy
63(1)
1.8 Laser-Induced Fluorescence
64(12)
1.8.1 Molecular Spectroscopy by Laser-Induced Fluorescence
65(2)
1.8.2 Experimental Aspects of LIF
67(3)
1.8.3 LIF of Polyatomic Molecules
70(2)
1.8.4 Photon Bursts
72(1)
1.8.5 Determination of Population Distributions by LIF
72(4)
1.8.6 Laser-Induced Breakdown Spectroscopy LIBS
76(1)
1.9 Comparison Between the Different Methods
76(4)
1.10 Problems
80(3)
2 Nonlinear Spectroscopy
83(66)
2.1 Linear and Nonlinear Absorption
83(8)
2.2 Saturation of Inhomogeneous Line Profiles
91(8)
2.2.1 Hole Burning
92(4)
2.2.2 Lamb Dip
96(3)
2.3 Saturation Spectroscopy
99(11)
2.3.1 Experimental Schemes
100(4)
2.3.2 Cross-Over Signals
104(1)
2.3.3 Intracavity Saturation Spectroscopy
105(3)
2.3.4 Lamb-Dip Frequency Stabilization of Lasers
108(2)
2.4 Polarization Spectroscopy
110(14)
2.4.1 Basic Principle
110(2)
2.4.2 Line Profiles of Polarization Signals
112(5)
2.4.3 Magnitude of Polarization Signals
117(3)
2.4.4 Sensitivity of Polarization Spectroscopy
120(3)
2.4.5 Advantages of Polarization Spectroscopy
123(1)
2.5 Multiphoton Spectroscopy
124(14)
2.5.1 Two-Photon Absorption
124(3)
2.5.2 Doppler-Free Multiphoton Spectroscopy
127(4)
2.5.3 Influence of Focusing on the Magnitude of Two-Photon Signals
131(1)
2.5.4 Examples of Doppler-Free Two-Photon Spectroscopy
132(3)
2.5.5 Multiphoton Spectroscopy
135(3)
2.6 Special Techniques of Nonlinear Spectroscopy
138(8)
2.6.1 Saturated Interference Spectroscopy
138(2)
2.6.2 Doppler-Free Laser-Induced Dichroism and Birefringence
140(2)
2.6.3 Heterodyne Polarization Spectroscopy
142(1)
2.6.4 Combination of Different Nonlinear Techniques
143(3)
2.7 Conclusion
146(1)
2.8 Problems
146(3)
3 Laser Raman Spectroscopy
149(34)
3.1 Basic Considerations
149(6)
3.2 Experimental Techniques of Linear Laser Raman Spectroscopy
155(6)
3.3 Nonlinear Raman Spectroscopy
161(14)
3.3.1 Stimulated Raman Scattering
162(6)
3.3.2 Coherent Anti-Stokes Raman Spectroscopy
168(3)
3.3.3 Resonant CARS and BOX CARS
171(2)
3.3.4 Hyper-Raman Effect
173(2)
3.3.5 Summary of Nonlinear Raman Spectroscopy
175(1)
3.4 Special Techniques
175(3)
3.4.1 Resonance Raman Effect
175(1)
3.4.2 Surface-Enhanced Raman Scattering
176(1)
3.4.3 Raman Microscopy
177(1)
3.4.4 Time-Resolved Raman Spectroscopy
177(1)
3.5 Applications of Laser Raman Spectroscopy
178(2)
3.6 Problems
180(3)
4 Laser Spectroscopy in Molecular Beams
183(42)
4.1 Reduction of Doppler Width
184(8)
4.2 Adiabatic Cooling in Supersonic Beams
192(8)
4.3 Formation and Spectroscopy of Clusters and Van der Waals Molecules in Cold Molecular Beams
200(5)
4.4 Nonlinear Spectroscopy in Molecular Beams
205(3)
4.5 Laser Spectroscopy in Fast Ion Beams
208(3)
4.6 Applications of FIBLAS
211(4)
4.6.1 Spectroscopy of Radioactive Elements
211(1)
4.6.2 Photofragmentation Spectroscopy of Molecular Ions
211(2)
4.6.3 Saturation Spectroscopy in Fast Beams
213(2)
4.7 Spectroscopy in Cold Ion Beams
215(1)
4.8 Laser Photo-Detachment in Molecular Beams
216(2)
4.9 Combination of Molecular Beam Laser Spectroscopy and Mass Spectrometry
218(5)
4.10 Problems
223(2)
5 Optical Pumping and Double-Resonance Techniques
225(46)
5.1 Optical Pumping
226(6)
5.2 Optical--RF Double-Resonance Technique
232(6)
5.2.1 Basic Considerations
232(3)
5.2.2 Laser--RF Double-Resonance Spectroscopy in Molecular Beams
235(3)
5.3 Optical--Microwave Double Resonance
238(4)
5.4 Optical--Optical Double Resonance
242(17)
5.4.1 Simplification of Complex Absorption Spectra
243(4)
5.4.2 Stepwise Excitation and Spectroscopy of Rydberg States
247(9)
5.4.3 Stimulated Emission Pumping
256(3)
5.5 Special Detection Schemes of Double-Resonance Spectroscopy
259(9)
5.5.1 OODR-Polarization Spectroscopy
259(3)
5.5.2 Polarization Labeling
262(1)
5.5.3 Microwave--Optical Double-Resonance Polarization Spectroscopy
263(1)
5.5.4 Hole-Burning and Ion-Dip Double-Resonance Spectroscopy
264(1)
5.5.5 Triple-Resonance Spectroscopy
265(1)
5.5.6 Photoassociation Spectroscopy
266(2)
5.6 Problems
268(3)
6 Time-Resolved Laser Spectroscopy
271(98)
6.1 Generation of Short Laser Pulses
272(52)
6.1.1 Time Profiles of Pulsed Lasers
272(2)
6.1.2 Q-Switched Lasers
274(2)
6.1.3 Cavity Dumping
276(2)
6.1.4 Mode Locking of Lasers
278(9)
6.1.5 Generation of Femtosecond Pulses
287(7)
6.1.6 Optical Pulse Compression
294(5)
6.1.7 Sub 10 fs Pulses with Chirped Laser Mirrors
299(4)
6.1.8 Fiber Lasers
303(1)
6.1.9 Soliton Lasers
304(3)
6.1.10 Wavelength-Tunable Ultrashort Pulses
307(5)
6.1.1 I Shaping of Ultrashort Light Pulses
312(1)
6.1.12 Generation of High-Power Ultrashort Pulses
313(7)
6.1.13 Reaching the Attosecond Range
320(3)
6.1.14 Summary of Short Pulse Generation
323(1)
6.2 Measurement of Ultrashort Pulses
324(22)
6.2.1 Streak Camera
325(2)
6.2.2 Optical Correlator for Measuring Ultrashort Pulses
327(10)
6.2.3 FROG Technique
337(3)
6.2.4 SPIDER Technique
340(4)
6.2.5 CRAB- and VAMPIRE-Techniques
344(1)
6.2.6 Comparison of the Different Techniques
345(1)
6.3 Lifetime Measurement with Lasers
346(10)
6.3.1 Phase-Shift Method
348(2)
6.3.2 Single-Pulse Excitation
350(1)
6.3.3 Delayed-Coincidence Technique
351(2)
6.3.4 Lifetime Measurements in Fast Beams
353(3)
6.4 Spectroscopy in the Pico-to-Attosecond Range
356(11)
6.4.1 Pump-and-Probe Spectroscopy of Collisional Relaxation in Liquids
358(1)
6.4.2 Electronic Relaxation in Semiconductors
359(1)
6.4.3 Femtosecond Transition State Dynamics
360(1)
6.4.4 Real-Time Observations of Molecular Vibrations
361(3)
6.4.5 Attosecond Spectroscopy of Atomic Inner Shell Processes
364(2)
6.4.6 Transient Grating Techniques
366(1)
6.5 Problems
367(2)
7 Coherent Spectroscopy
369(60)
7.1 Level-Crossing Spectroscopy
370(13)
7.1.1 Classical Model of the Hanle Effect
371(4)
7.1.2 Quantum-Mechanical Models
375(2)
7.1.3 Experimental Arrangements
377(2)
7.1.4 Examples
379(1)
7.1.5 Stimulated Level-Crossing Spectroscopy
380(3)
7.2 Quantum-Beat Spectroscopy
383(8)
7.2.1 Basic Principles
384(1)
7.2.2 Experimental Techniques
385(4)
7.2.3 Molecular Quantum-Beat Spectroscopy
389(2)
7.3 STIRAP Technique
391(2)
7.4 Excitation and Detection of Wave Packets in Atoms and Molecules
393(2)
7.5 Coherent Control
395(1)
7.6 Optical Pulse-Train Interference Spectroscopy
396(3)
7.7 Photon Echoes
399(6)
7.8 Optical Nutation and Free-Induction Decay
405(2)
7.9 Self-Induced Transparency
407(2)
7.10 Coherent Dark States and Dark Resonances
409(2)
7.11 Heterodyne Spectroscopy
411(1)
7.12 Correlation Spectroscopy
412(14)
7.12.1 Basic Considerations
413(4)
7.12.2 Homodyne Spectroscopy
417(3)
7.12.3 Heterodyne Correlation Spectroscopy
420(2)
7.12.4 Fluorescence Correlation Spectroscopy and Single Molecule Detection
422(4)
7.13 Optical Coherence Tomography
426(1)
7.14 Problems
427(2)
8 Laser Spectroscopy of Collision Processes
429(44)
8.1 High-Resolution Laser Spectroscopy of Collisional Line Broadening and Line Shifts
430(5)
8.1.1 Sub-Doppler Spectroscopy of Collision Processes
431(3)
8.1.2 Combination of Different Techniques
434(1)
8.2 Measurements of Inelastic Collision Cross Sections of Excited Atoms and Molecules
435(11)
8.2.1 Measurements of Absolute Quenching Cross Sections
436(1)
8.2.2 Collision-Induced Rovibronic Transitions in Excited States
437(4)
8.2.3 Collisional Transfer of Electronic Energy
441(2)
8.2.4 Energy Pooling in Collisions Between Excited Atoms
443(1)
8.2.5 Spectroscopy of Spin-Flip Transitions
444(2)
8.3 Spectroscopic Techniques for Measuring Collision-Induced Transitions in the Electronic Ground State of Molecules
446(9)
8.3.1 Time-Resolved Infrared Fluorescence Detection
447(1)
8.3.2 Time-Resolved Absorption and Double-Resonance Methods
448(4)
8.3.3 Collision Spectroscopy with Continuous-Wave Lasers
452(1)
8.3.4 Collisions Involving Molecules in High Vibrational States
453(2)
8.4 Spectroscopy of Reactive Collisions
455(5)
8.5 Spectroscopic Determination of Differential Collision Cross Sections in Crossed Molecular Beams
460(5)
8.6 Photon-Assisted Collisional Energy Transfer
465(5)
8.7 Problems
470(3)
9 New Developments in Laser Spectroscopy
473(116)
9.1 Optical Cooling and Trapping of Atoms
473(50)
9.1.1 Photon Recoil
474(2)
9.1.2 Measurement of Recoil Shift
476(2)
9.1.3 Optical Cooling by Photon Recoil
478(3)
9.1.4 Experimental Arrangements
481(6)
9.1.5 Three-dimensional Cooling of Atoms: Optical Molasses
487(2)
9.1.6 Cooling of Molecules
489(2)
9.1.7 Optical Trapping of Atoms
491(7)
9.1.8 Optical Micro-traps
498(7)
9.1.9 Optical Cooling Limits
505(3)
9.1.10 Bose--Einstein Condensation
508(1)
9.1.11 Evaporative Cooling
509(4)
9.1.12 Properties of the Bose--Einstein Condensate
513(2)
9.1.13 Atom Lasers
515(2)
9.1.14 Production and Trapping of Cold Fermi-Gases
517(1)
9.1.15 BEC of Molecules
518(2)
9.1.16 Atoms and Molecules in Optical Lattices
520(1)
9.1.17 Applications of Cooled Atoms and Molecules
521(2)
9.2 Spectroscopy of Single Ions
523(12)
9.2.1 Trapping of Ions
523(4)
9.2.2 Optical Sideband Cooling
527(1)
9.2.3 Direct Observations of Quantum Jumps
528(3)
9.2.4 Formation of Wigner Crystals in Ion Traps
531(2)
9.2.5 Laser Spectroscopy of Ions in Storage Rings
533(1)
9.2.6 Quantum Computer with Stored Ions
534(1)
9.3 Optical Ramsey Fringes
535(15)
9.3.1 Basic Considerations
536(3)
9.3.2 Two-Photon Ramsey Resonance
539(3)
9.3.3 Nonlinear Ramsey Fringes Using Three Separated Fields
542(3)
9.3.4 Observation of Recoil Doublets and Suppression of One Recoil Component
545(2)
9.3.5 Optical Ramsey Resonances Obtained Through an Equidistant Train of Laser Pulses
547(1)
9.3.6 Atomic Fountain
548(2)
9.4 Atom Interferometry
550(3)
9.4.1 Mach--Zehnder Atom Interferometer
550(3)
9.5 The One-Atom Maser
553(4)
9.6 Spectral Resolution Within the Natural Linewidth
557(9)
9.6.1 Time-Gated Coherent Spectroscopy
558(4)
9.6.2 Coherence and Transit Narrowing
562(2)
9.6.3 Raman Spectroscopy with Subnatural Linewidth
564(2)
9.7 Absolute Optical Frequency Measurement and Optical Frequency Standards
566(10)
9.7.1 Microwave--Optical Frequency Chains
566(3)
9.7.2 Optical Frequency Combs
569(4)
9.7.3 Spectral Extension of Frequency Combs
573(1)
9.7.4 Applications of Optical Frequency Combs
574(1)
9.7.5 Molecular Spectroscopy with Optical Frequency Combs
575(1)
9.8 Squeezing
576(10)
9.8.1 Amplitude and Phase Fluctuations of a Light Wave
577(4)
9.8.2 Experimental Realization of Squeezing
581(3)
9.8.3 Application of Squeezing to Gravitational Wave Detectors
584(2)
9.9 Problems
586(3)
10 Applications of Laser Spectroscopy
589(62)
10.1 Applications in Chemistry
589(17)
10.1.1 Laser Spectroscopy in Analytical Chemistry
590(2)
10.1.2 Single-Molecule Detection
592(3)
10.1.3 Laser-Induced Chemical Reactions
595(3)
10.1.4 Coherent Control of Chemical Reactions
598(3)
10.1.5 Laser Femtosecond Chemistry
601(2)
10.1.6 Isotope Separation with Lasers
603(3)
10.1.7 Summary of Laser Chemistry
606(1)
10.2 Environmental Research with Lasers
606(13)
10.2.1 Absorption Measurements
607(2)
10.2.2 Atmospheric Measurements with LIDAR
609(7)
10.2.3 Spectroscopic Detection of Water Pollution
616(2)
10.2.4 Earth Science Applications
618(1)
10.3 Applications to Technical Problems
619(7)
10.3.1 Spectroscopy of Combustion Processes
620(2)
10.3.2 Applications of Laser Spectroscopy to Materials Science
622(1)
10.3.3 Laser-Induced Breakdown Spectroscopy (LIBS)
623(2)
10.3.4 Measurements of Flow Velocities in Gases and Liquids
625(1)
10.4 Applications in Biology
626(10)
10.4.1 Energy Transfer in DNA Complexes
626(1)
10.4.2 Time-Resolved Measurements of Biological Processes
627(2)
10.4.3 Correlation Spectroscopy of Microbe Movements
629(1)
10.4.4 Laser Microscope
630(5)
10.4.5 Detection of Single Biological Molecules
635(1)
10.5 Medical Applications of Laser Spectroscopy
636(14)
10.5.1 Infrared and Raman Spectroscopy of Respiratory Gases
638(2)
10.5.2 Lasers for Eye-Diagnostics
640(2)
10.5.3 Detection of Tissue Anomalies and Cancer
642(2)
10.5.4 Heterodyne Measurements of Ear Drums
644(1)
10.5.5 Cancer Diagnostics and Photodynamic Therapy
645(2)
10.5.6 Laser Lithotripsy
647(2)
10.5.7 Laser-Induced Thermotherapy of Brain Cancer
649(1)
10.5.8 Fetal Oxygen Monitoring
649(1)
10.6 Concluding Remarks
650(1)
Solutions 651(30)
References 681(70)
Index 751
Wolfgang Demtröder, Kaiserslautern, Germany.