|
1 Quantum Field Theory (QFT) on the Lattice |
|
|
1 | (34) |
|
1.1 A Brief History of Quarks and Gluons |
|
|
1 | (1) |
|
1.2 Classical Fields and Gauge Invariance |
|
|
2 | (1) |
|
1.3 Hamiltonian and Path Integral Formulations of Quantum Mechanics |
|
|
3 | (4) |
|
1.3.1 One Bosonic Oscillator |
|
|
4 | (2) |
|
1.3.2 One Fermionic Oscillator |
|
|
6 | (1) |
|
1.4 Quantum Fields on a Lattice |
|
|
7 | (16) |
|
1.4.1 From One Oscillator to a Field |
|
|
7 | (3) |
|
1.4.2 Correlation Functions |
|
|
10 | (1) |
|
1.4.3 Analytic Continuation to Minkowski Space |
|
|
11 | (2) |
|
1.4.4 Gauge Invariance on the Lattice |
|
|
13 | (1) |
|
1.4.5 The Wilson Gauge Action |
|
|
14 | (1) |
|
1.4.6 Strong Coupling Expansions |
|
|
15 | (2) |
|
1.4.7 The Wilson Fermion Action |
|
|
17 | (1) |
|
1.4.8 Chiral Symmetry and the Nielsen-Ninomiya No-Go Theorem |
|
|
18 | (3) |
|
1.4.9 Other Fermion Formulations |
|
|
21 | (2) |
|
1.5 Recovering Continuum QCD |
|
|
23 | (9) |
|
1.5.1 Classical Continuum Limit |
|
|
24 | (1) |
|
1.5.2 Renormalisation Group Equation |
|
|
25 | (2) |
|
1.5.3 Isospin Symmetry and Ward Identities |
|
|
27 | (1) |
|
1.5.4 Improvement of the Continuum Limit |
|
|
28 | (2) |
|
1.5.5 Improvement of Wilson Fermions |
|
|
30 | (1) |
|
1.5.6 Twisted Mass Fermions |
|
|
31 | (1) |
|
|
32 | (3) |
|
|
33 | (2) |
|
|
35 | (20) |
|
2.1 Markov Chain Monte Carlo |
|
|
35 | (2) |
|
2.2 Sampling Yang-Mills Gauge Fields |
|
|
37 | (6) |
|
2.2.1 Random Numbers and the Rejection Method |
|
|
38 | (1) |
|
2.2.2 Heatbath Algorithms |
|
|
39 | (3) |
|
2.2.3 Overrelaxation Algorithms |
|
|
42 | (1) |
|
|
43 | (5) |
|
2.3.1 Detailed Balance Condition |
|
|
44 | (2) |
|
2.3.2 Hamilton's Equation of Motion |
|
|
46 | (2) |
|
2.4 Symplectic Integration Schemes |
|
|
48 | (4) |
|
2.5 Summary and Further Reading |
|
|
52 | (3) |
|
|
53 | (2) |
|
3 Handling Fermions on the Lattice |
|
|
55 | (42) |
|
|
55 | (3) |
|
3.2 Sparse Linear Algebra |
|
|
58 | (15) |
|
3.2.1 Krylov Subspace Techniques |
|
|
59 | (2) |
|
3.2.2 Iterative Solvers for Linear Systems |
|
|
61 | (6) |
|
3.2.3 Algebraic Multigrid Methods |
|
|
67 | (1) |
|
3.2.4 Other Uses of Krylov Subspaces |
|
|
68 | (5) |
|
|
73 | (4) |
|
|
73 | (2) |
|
|
75 | (2) |
|
3.4 HMC with Fermions Revisited |
|
|
77 | (7) |
|
3.4.1 Equations of Motion |
|
|
77 | (3) |
|
3.4.2 Multi-rate Integration Schemes |
|
|
80 | (1) |
|
3.4.3 A Single Dynamical Quark Flavour: The RHMC Algorithm |
|
|
81 | (3) |
|
3.5 The Quark Propagator from a Point Source |
|
|
84 | (3) |
|
3.5.1 Quark Observables from a Single Point Source |
|
|
84 | (2) |
|
3.5.2 Reducing Variance in Point Propagator Calculations |
|
|
86 | (1) |
|
3.6 All-to-All Quark Propagators |
|
|
87 | (6) |
|
3.6.1 Stochastic Estimators |
|
|
87 | (5) |
|
3.6.2 Exploiting Low Eigenmodes of the Dirac Operator |
|
|
92 | (1) |
|
3.7 Summary and Further Reading |
|
|
93 | (4) |
|
|
94 | (3) |
|
4 Calculating Observables of Quantum Fields |
|
|
97 | (38) |
|
4.1 Symmetry Properties of Creation and Annihilation Operators |
|
|
97 | (6) |
|
4.1.1 Gauge-Invariant Observables |
|
|
98 | (1) |
|
4.1.2 Charge Conjugation, Isopin and Flavour Symmetry |
|
|
98 | (2) |
|
|
100 | (2) |
|
4.1.4 Translation Invariance and Momentum |
|
|
102 | (1) |
|
4.1.5 Reducing Representations of Symmetries |
|
|
102 | (1) |
|
4.2 Techniques for Hadron Spectroscopy |
|
|
103 | (8) |
|
4.2.1 Variational Methods |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
106 | (2) |
|
4.2.4 Scattering and the Luscher Method |
|
|
108 | (3) |
|
4.3 Gluons, Wilson Loops and Glueballs |
|
|
111 | (7) |
|
|
111 | (2) |
|
|
113 | (1) |
|
4.3.3 The Static Potential and Strong Coupling Constant |
|
|
114 | (3) |
|
|
117 | (1) |
|
4.4 Quarks and Hadron Physics |
|
|
118 | (8) |
|
|
119 | (1) |
|
4.4.2 Hadron Physics with Quarks |
|
|
120 | (3) |
|
4.4.3 Hadron Scattering in Lattice Monte Carlo Calculations |
|
|
123 | (2) |
|
4.4.4 The Static Potential with Light Quarks: String Breaking |
|
|
125 | (1) |
|
4.5 Statistical Data Analysis |
|
|
126 | (5) |
|
4.5.1 Controlling Bias, Covariance and Autocorrelations in Data from a Markov Chain |
|
|
127 | (3) |
|
4.5.2 Comparing Monte Carlo Data to a Model |
|
|
130 | (1) |
|
|
131 | (4) |
|
|
131 | (4) |
Appendix A Notational Conventions |
|
135 | |