Acknowledgments |
|
vii | |
Preface |
|
ix | |
|
|
1 | (6) |
|
1.1 Mathematical Background |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.4 Lattice Gauge Theory Hamiltonian |
|
|
4 | (3) |
|
|
7 | (104) |
|
2 SU (N) Compact Lie Groups |
|
|
9 | (20) |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (1) |
|
2.4 Metric on SU (N) Group Space |
|
|
13 | (2) |
|
|
14 | (1) |
|
2.5 The Invariant Haar Measure and Delta Function |
|
|
15 | (2) |
|
2.5.1 Delta function on group space |
|
|
16 | (1) |
|
|
16 | (1) |
|
2.5.3 SU(2) measure: invariant |
|
|
17 | (1) |
|
2.6 Campbell-Baker-Hausdorff (CBH) Formula |
|
|
17 | (1) |
|
2.7 Irreducible Representations of SU(TV) |
|
|
18 | (2) |
|
|
20 | (1) |
|
2.9 Lie Algebra Generators: Differential Operators |
|
|
21 | (2) |
|
2.10 Vielbein eab and fab for SU(2) |
|
|
23 | (1) |
|
2.11 Left and Right Invariant Generators |
|
|
24 | (2) |
|
2.11.1 Differential realization of 50(3) generators on state space |
|
|
26 | (1) |
|
2.12 SU(Af) Character Function Expansion |
|
|
26 | (2) |
|
|
28 | (1) |
|
3 SU (N) Kac-Moody Algebra |
|
|
29 | (26) |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.3 Functional Differentiation |
|
|
31 | (2) |
|
|
32 | (1) |
|
|
33 | (5) |
|
3.4.1 Kac-Moody generator and the 2-cocycle |
|
|
36 | (2) |
|
|
38 | (2) |
|
|
40 | (3) |
|
|
43 | (1) |
|
3.8 SU(2) Kac-Moody Algebra |
|
|
44 | (2) |
|
3.9 Kac-Moody Commutation Equations |
|
|
46 | (3) |
|
3.10 Virasoro Generator: Point-Split Regularization |
|
|
49 | (4) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (26) |
|
|
55 | (1) |
|
|
56 | (2) |
|
4.2.1 U(1) and SU(2) evolution kernel |
|
|
57 | (1) |
|
4.3 Lattice Action for SU(AT) |
|
|
58 | (1) |
|
4.4 Classical Paths and Winding Number |
|
|
59 | (4) |
|
|
63 | (1) |
|
4.6 U(1) Path Integral: Classical Paths |
|
|
64 | (1) |
|
4.7 St/(AO Continuum Action |
|
|
65 | (1) |
|
4.8 SU (2) Path Integration |
|
|
66 | (7) |
|
4.8.1 SU (3) path integration |
|
|
70 | (2) |
|
4.8.2 SU (M) path integration |
|
|
72 | (1) |
|
|
73 | (1) |
|
4.10 Appendix: Continuum Limit of SU(M) Path Integral |
|
|
74 | (7) |
|
5 SU(3) Character Functions |
|
|
81 | (6) |
|
5.1 Casimir Operator for SU(3) |
|
|
81 | (2) |
|
5.2 Evolution Kernel for SU(3) |
|
|
83 | (1) |
|
5.3 Character Functions of SU(3) |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
87 | (24) |
|
|
88 | (1) |
|
|
89 | (1) |
|
6.3 Fermion Hilbert Space |
|
|
90 | (4) |
|
6.3.1 Fermionic completeness equation |
|
|
92 | (1) |
|
6.3.2 Fermionic momentum operator |
|
|
93 | (1) |
|
6.4 Antifermion State Space |
|
|
94 | (1) |
|
6.5 Fermion and Antifermion Hilbert Space |
|
|
95 | (1) |
|
6.6 Real and Complex Fermions: Gaussian Integration |
|
|
96 | (4) |
|
6.6.1 Complex Gaussian fermions |
|
|
98 | (2) |
|
6.7 Fermionic Path Integral and Hamiltonian |
|
|
100 | (2) |
|
|
102 | (1) |
|
6.9 Fermion-Antifermion Hamiltonians |
|
|
103 | (1) |
|
6.10 A Quadratic Hamiltonian |
|
|
104 | (1) |
|
6.10.1 Orthogonality and completeness |
|
|
104 | (1) |
|
6.11 Fermion-Antifermion Lagrangian |
|
|
105 | (2) |
|
6.12 Fermionic Transition Probability Amplitude |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (2) |
|
|
111 | (98) |
|
7 Non-Abelian Lattice Gauge Field |
|
|
113 | (18) |
|
|
113 | (3) |
|
7.2 The Weak Coupling Approximation |
|
|
116 | (2) |
|
7.3 Gauge-Fixing the Lagrangian |
|
|
118 | (1) |
|
|
118 | (1) |
|
7.5 Gauge-Fixed Path Integral |
|
|
119 | (1) |
|
7.6 The Faddeev-Popov Counter-Term |
|
|
120 | (1) |
|
7.7 Abelian Gauge-Fixed Path Integral |
|
|
121 | (2) |
|
7.8 Lattice Faddeev-Popov Non-Abelian Ghost Action |
|
|
123 | (3) |
|
7.9 Lattice BRST Symmetry |
|
|
126 | (4) |
|
|
130 | (1) |
|
8 Abelian Lattice Gauge Field in d = 3 |
|
|
131 | (12) |
|
|
131 | (1) |
|
8.2 Strong Coupling Representation |
|
|
132 | (2) |
|
8.3 Weak Coupling Representation |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
137 | (3) |
|
8.6.1 Mean field approximation |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
9 Lattice Gauge Field Mass Renormalization |
|
|
143 | (14) |
|
|
143 | (1) |
|
9.2 The Propagator and Mass Renormalization |
|
|
144 | (2) |
|
9.3 The Computational Scheme |
|
|
146 | (1) |
|
9.4 Determination of mα and mμ |
|
|
147 | (1) |
|
9.5 Determination of mc for Sc [ θ + B] |
|
|
148 | (1) |
|
9.6 Expansion of the Gauge Field Action |
|
|
149 | (2) |
|
9.7 Determination of mA for S (θ + B) + Sα[ B] |
|
|
151 | (2) |
|
9.8 One-Loop Mass Renormalization |
|
|
153 | (1) |
|
9.9 Slavnov-Taylor Identity |
|
|
154 | (1) |
|
|
155 | (2) |
|
10 Gauge Field Block-Spin Renormalization |
|
|
157 | (30) |
|
|
157 | (1) |
|
10.2 Two-Dimensional Lattice Gauge Field |
|
|
158 | (1) |
|
10.3 The Renormalization Group Transformation |
|
|
159 | (6) |
|
10.3.1 Renormalization group and fixed points |
|
|
165 | (1) |
|
10.4 The Recursion Equation for d Dimensions |
|
|
165 | (4) |
|
10.5 Strong Coupling Approximation for SU(2) |
|
|
169 | (1) |
|
10.6 Weak Coupling Expansion for SU(2) |
|
|
170 | (4) |
|
10.7 Weak Coupling Approximation for d = 4 + e |
|
|
174 | (1) |
|
10.8 Weak Coupling 517(2) Gauge Field: β-Function |
|
|
175 | (1) |
|
10.9 Numerical Solution of the Recursion Equation |
|
|
176 | (6) |
|
10.9.1 Change of integration variable |
|
|
176 | (2) |
|
10.9.2 Numerical algorithm |
|
|
178 | (1) |
|
10.9.3 Total grid size S(I) |
|
|
179 | (3) |
|
|
182 | (2) |
|
10.11 Summary: Confinement and Asymptotic Freedom |
|
|
184 | (1) |
|
|
185 | (2) |
|
11 Lattice Gauge Field Hamiltonian |
|
|
187 | (22) |
|
11.1 Lattice Gauge Field Hamiltonian |
|
|
188 | (3) |
|
11.2 Gauge-Fixed Chromoelectric Operator |
|
|
191 | (3) |
|
|
194 | (3) |
|
11.4 Gauge-Fixed Lattice Gauge Field Hamiltonian |
|
|
197 | (1) |
|
11.5 Hamiltonian and Covariant Gauge: Faddeev-Popov Quantization |
|
|
198 | (1) |
|
11.6 Ghost State Space and Hamiltonian |
|
|
199 | (3) |
|
11.6.1 BRST cohomology: state space |
|
|
201 | (1) |
|
|
202 | (2) |
|
|
204 | (4) |
|
11.8.1 Gupta-Bleuler condition |
|
|
206 | (2) |
|
|
208 | (1) |
|
|
209 | (60) |
|
12 Dirac Lattice Path Integral |
|
|
211 | (32) |
|
|
211 | (1) |
|
12.2 Dirac Field Coordinates |
|
|
212 | (1) |
|
12.3 Dirac Lattice Lagrangian |
|
|
213 | (3) |
|
12.4 Lattice Fermions and Chiral Symmetry |
|
|
216 | (3) |
|
12.5 Dirac Field: Boundary Conditions |
|
|
219 | (1) |
|
12.6 Dirac Fermionic State Space |
|
|
220 | (3) |
|
12.7 Hilbert Space Metric and Transfer Matrix |
|
|
223 | (4) |
|
12.8 Dirac Lattice Hamiltonian |
|
|
227 | (2) |
|
12.9 Lattice Path Integral |
|
|
229 | (4) |
|
12.9.1 Normalization constant |
|
|
232 | (1) |
|
|
233 | (2) |
|
12.11 Energy Eigenfunctions |
|
|
235 | (3) |
|
|
238 | (3) |
|
|
241 | (2) |
|
|
243 | (26) |
|
|
244 | (1) |
|
13.2 Lattice Dirac Hamiltonian |
|
|
245 | (2) |
|
13.3 Continuum Hilbert Space |
|
|
247 | (1) |
|
13.4 Continuum Hamiltonian |
|
|
248 | (6) |
|
13.5 Dirac Field's Energy Eigenfunctionals |
|
|
254 | (2) |
|
13.6 Dirac Charge Operator |
|
|
256 | (3) |
|
13.6.1 Momentum and spin operators |
|
|
258 | (1) |
|
13.7 Finite Time Dirac Action |
|
|
259 | (2) |
|
13.8 Continuum Evolution Kernel |
|
|
261 | (2) |
|
13.9 Evolution Kernel: General Quadratic Case |
|
|
263 | (2) |
|
13.10 Evolution Kernel: Dirac Hamiltonian |
|
|
265 | (2) |
|
13.10.1 Chiral charge operator |
|
|
267 | (1) |
|
|
267 | (2) |
|
Lattice Gauge Theory Hamiltonian |
|
|
269 | (24) |
|
14 Lattice Gauge Theory Hamiltonian |
|
|
271 | (22) |
|
|
271 | (1) |
|
14.2 Finite Time Action and Transfer Matrix |
|
|
272 | (3) |
|
|
275 | (1) |
|
14.4 Noncanonical Fermion Anticommutation Equations |
|
|
276 | (1) |
|
14.5 Lattice Gauge Theory Hamiltonian |
|
|
277 | (2) |
|
|
279 | (1) |
|
14.7 Color Charge Operator and Gauss's Law |
|
|
280 | (4) |
|
14.8 Lattice Action from Lattice Hamiltonian |
|
|
284 | (2) |
|
|
286 | (1) |
|
14.10 Appendix A: Fermion Calculus with Gauge Field |
|
|
286 | (2) |
|
14.11 Appendix B: Matrix M |
|
|
288 | (1) |
|
14.12 Appendix C: Lagrangian for an Asymmetric Lattice |
|
|
289 | (2) |
|
14.13 Appendix D: Classical Continuum Limit |
|
|
291 | (2) |
Bibliography |
|
293 | (4) |
Index |
|
297 | |