Muutke küpsiste eelistusi

E-raamat: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1985
  • Ilmumisaeg: 21-Nov-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642051340
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 1985
  • Ilmumisaeg: 21-Nov-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642051340

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is a book on numerical methods for singular perturbation problems in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [ 141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a rather short introduction to layer-adapted meshes, while the present book is exclusively dedicated to that subject. An early important contribution towards the optimisation of numerical methods by means of special meshes was made by N.S. Bakhvalov [ 18] in 1969. His paper spawned a lively discussion in the literature with a number of further meshes - ing proposed and applied to various singular perturbation problems. However, in the mid 1980s, this development stalled, but was enlivened again by G.I. Shishkins proposal of piecewise-equidistant meshes in the early 1990s [ 121,150]. Because of their very simple structure, they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on c- peting meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue.

Arvustused

From the reviews:

The book gives a thorough analysis of layer-adapted meshes used in the numerical treatment of reaction-convection-diffusion equations and hence is a book on numerical methods for singular perturbation problems. The book is a welcome enrichement of the classical literature in that it shows clearly what can be done on meshes which are not of Shishkin-type. (Thomas Sonar, Zentralblatt MATH, Vol. 1202, 2011)

Introduction
1(4)
Layer-Adapted Meshes
5(28)
Convection-Diffusion Problems
6(13)
Bakhvalov Meshes
7(2)
Shishkin Meshes
9(1)
Shishkin-Type Meshes
10(5)
Turning-Point Boundary Layers
15(1)
Interior Layers
16(1)
Overlapping Layers
17(2)
Reaction-Convection-Diffusion Problems
19(5)
Interior Layers
21(2)
Overlapping Layers
23(1)
Two-Dimensional Problems
24(9)
Reaction-Diffusion Problems
25(1)
Convection-Diffusion
26(7)
Part I One Dimensional Problems
The Analytical Behaviour of Solutions
33(44)
Preliminaries
34(4)
Stability of Differential Operators
34(2)
Green's Functions
36(1)
M-Matrices
37(1)
Reaction-Convection-Diffusion Problems
38(10)
Stability and Green's Function Estimates
39(6)
Derivative Bounds and Solution Decomposition
45(3)
Reaction-Diffusion Problems
48(9)
Scalar Reaction-Diffusion Problems
48(4)
Systems of Reaction-Diffusion Equations
52(5)
Convection-Diffusion Problems with Regular Layers
57(12)
Scalar Convection-Diffusion Problems
57(7)
Weakly Coupled Systems
64(2)
Strongly Coupled Systems
66(3)
Convection-Diffusion Problems with Turning-Point Layers
69(8)
Stability
69(2)
Derivative Bounds and Solution Decomposition
71(6)
Finite Difference Schemes for Convection-Diffusion Problems
77(74)
Notation
77(2)
A Simple Upwind Difference Scheme
79(30)
Stability of the Discrete Operator
80(4)
A Priori Error Bounds
84(3)
Error Expansion
87(5)
A Posteriori Error Estimation and Adaptivity
92(5)
An Alternative Convergence Proof
97(3)
The Truncation Error and Barrier Function Technique
100(3)
Discontinuous Coefficients and Point Sources
103(3)
Quasilinear Problems
106(1)
Derivative Approximation
107(2)
Second-Order Difference Schemes
109(25)
Second-Order Upwind Schemes
109(10)
Central Differencing
119(2)
Convergence Acceleration Techniques
121(11)
A Numerical Example
132(2)
Systems
134(9)
Weakly Coupled Systems in One Dimension
134(3)
Strongly Coupled Systems
137(6)
Problems with Turning Point Layers
143(8)
A First-Order Upwind Scheme
144(3)
Convergence on Shishkin Meshes
147(1)
A Numerical Example
148(3)
Finite Element and Finite Volume Methods
151(32)
The Interpolation Error
152(2)
Linear Galerkin FEM
154(9)
Convergence
154(2)
Supercloseness
156(4)
Gradient Recovery and a Posteriori Error Estimation
160(2)
A Numerical Example
162(1)
Stabilised FEM
163(5)
Artificial Viscosity Stabilisation
163(1)
Streamline-Diffusion Stabilisation
164(4)
An Upwind Finite Volume Method
168(15)
Stability of the FVM
171(4)
Convergence in the Energy Norm
175(5)
Convergence in the Maximum Norm
180(2)
A Numerical Example
182(1)
Discretisations of Reaction-Convection-Diffusion Problems
183(52)
Reaction-Diffusion
183(31)
Linear Finite Elements
184(6)
Central Differencing
190(12)
A Non-Monotone Scheme
202(4)
A Compact Fourth-Order Scheme
206(8)
Systems of Reaction-Diffusion Type
214(7)
The Interpolation Error
214(1)
Linear Finite Elements
215(2)
Central Differencing
217(4)
Reaction-Convection-Diffusion
221(14)
The Interpolation Error
222(1)
Simple Upwinding
223(12)
Part II Two Dimensional Problems
The Analytical Behaviour of Solutions
235(12)
Preliminaries
235(3)
Stability
236(1)
Regularity of Solutions
237(1)
Reaction-Diffusion
238(5)
Stability
239(1)
Derivative Bounds
240(3)
Convection-Diffusion
243(4)
Regular Layers
243(2)
Characteristic Layers
245(2)
Reaction-Diffusion Problems
247(10)
Central Differencing
247(7)
Stability
248(1)
Convergence on Layer-Adapted Meshes
249(4)
Numerical Results
253(1)
Arbitrary Bounded Domains
254(3)
Convection-Diffusion Problems
257(52)
Upwind Difference Schemes
257(6)
Stability
258(1)
Pointwise Error Bounds
258(4)
Error Expansion
262(1)
Finite Element Methods
263(34)
The Interpolation Error
264(3)
Galerkin FEM
267(18)
Artificial Viscosity Stabilisation
285(4)
Streamline-Diffusion FEM
289(5)
Characteristic Layers
294(3)
Finite Volume Methods
297(12)
Coercivity of the Method
299(3)
Inverse Monotonicity
302(4)
Convergence
306(3)
Conclusions and Outlook 309(2)
References 311(8)
Index 319