Muutke küpsiste eelistusi

E-raamat: Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,06 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable $t$-independent coefficients in spaces of fractional smoothness, in Besov and weighted $L^p$ classes. The authors establish:

(1) Mapping properties for the double and single layer potentials, as well as the Newton potential (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given $L^p$ space automatically assures their solvability in an extended range of Besov spaces (3) Well-posedness for the non-homogeneous boundary value problems.

In particular, the authors prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric, coefficients.
Chapter 1 Introduction
1(8)
1.1 History of the problem: LP setting
1(2)
1.2 The nature of the problem and our main results
3(4)
1.3 Outline of the monograph
7(2)
Acknowledgements
8(1)
Chapter 2 Definitions
9(12)
2.1 Function spaces
9(3)
2.2 Elliptic equations
12(2)
2.3 Layer potentials
14(2)
2.4 Boundary-value problems
16(5)
Chapter 3 The Main Theorems
21(10)
3.1 Sharpness of these results
28(3)
Chapter 4 Interpolation, Function Spaces and Elliptic Equations
31(14)
4.1 Interpolation functors
31(3)
4.2 Function spaces
34(5)
4.3 Solutions to elliptic equations
39(6)
Chapter 5 Boundedness of Integral Operators
45(14)
5.1 Boundedness of the Newton potential
45(4)
5.2 Boundedness of the double and single layer potentials
49(10)
Chapter 6 Trace Theorems
59(12)
Chapter 7 Results for Lebesgue and Sobolev Spaces: Historic Account and some Extensions
71(8)
Chapter 8 The Green's Formula Representation for a Solution
79(8)
Chapter 9 Invertibility of Layer Potentials and Well-Posedness of Boundary-Value Problems
87(12)
9.1 Invertibility and well-posedness: Theorems 3.16, 3.17 and 3.18
87(6)
9.2 Invertibility and functional analysis: Corollaries 3.19, 3.20 and 3.21
93(2)
9.3 Extrapolation of well-posedness and real coefficients: Corollaries 3.23 and 3.24
95(4)
Chapter 10 Besov Spaces and Weighted Sobolev Spaces
99(6)
Bibliography 105
Ariel Barton, University of Arkansas, Fayetteville, USA.

Svitlana Mayboroda, University of Minnesota, Minneapolis, USA.