Muutke küpsiste eelistusi

E-raamat: Learn Data Science Using Python: A Quick-Start Guide

  • Formaat: PDF+DRM
  • Ilmumisaeg: 15-Nov-2024
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9798868809354
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 15-Nov-2024
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9798868809354

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Harness the capabilities of Python and gain the expertise need to master data science techniques. This step-by-step book guides you through using Python to achieve tasks related to data cleaning, statistics, and visualization.





Youll start by reviewing the foundational aspects of the data science process. This includes an extensive overview of research points and practical applications, such as the insightful analysis of presidential elections. The journey continues by navigating through installation procedures and providing valuable insights into Python, data types, typecasting, and essential libraries like Pandas and NumPy. Youll then delve into the captivating world of data visualization. Concepts such as scatter plots, histograms, and bubble charts come alive through detailed discussions and practical code examples, unraveling the complexities of creating compelling visualizations for enhanced data understanding.





Statistical analysis, linear models, and advanced data preprocessing techniques are also discussed before moving on to preparing data for analysis, including renaming variables, variable rearrangement, and conditional statements. Finally, youll be introduced to regression techniques, demystifying the intricacies of simple and multiple linear regression, as well as logistic regression.





What Youll Learn









Understand installation procedures and valuable insights into Python, data types, typecasting Examine the fundamental statistical analysis required in most data science and analytics reports Clean the most common data set problems Use linear progression for data prediction





Who This Book Is For





Data Analysts, data scientists, Python programmers, and software developers new to data science.





 





 

Chapter 1: Data Science in Action.
Chapter 2: Getting Started.
Chapter 3: Data Visualization.
Chapter 4: Statistical Analysis and Linear Models.
Chapter 5: Advanced Data Pre-processing and Feature Engineering.
Chapter 6: Preparing Data for Analysis.
Chapter 7: Regression.

Engy Fouda is an adjunct lecturer at SUNY New Paltz teaching Intro to Data Science using SAS Studio and Introduction to Machine Learning using Python. She is an Apress and Packt Publishing author. Currently, she teaches SAS Fundamentals, Intermediate SAS, Advanced SAS, SAS SQL, Introduction to Python, Python for Data Science, Docker Fundamentals, Docker Enterprise for Developers, Docker Enterprise for Operations, Kubernetes, and DCA and SAS exams test-prep courses tracks at several venues as a freelance instructor.





She also works as a freelance writer for Geek Culture, Towards Data Science, and Medium Partner Program. She holds two masters degrees: one in journalism from Harvard University, the Extension School, and the other in computer engineering from Cairo University. Moreover, she earned a Data Science Graduate Professional Certificate from Harvard University, the Extension School. She volunteers as the chair of Egypt Scholars board and is former executive manager and former Momken team leader (Engineering for the Blind). She is the author of the books Learn Data Science Using SAS Studio and A Complete Guide to Docker for Operations and Development published by Apress and a co-author of The Docker Workshop published by Packt.