Series Foreword |
|
xiii | |
Preface |
|
xv | |
|
|
1 | (22) |
|
Data Representation and Similarity |
|
|
1 | (3) |
|
A Simple Pattern Recognition Algorithm |
|
|
4 | (2) |
|
Some Insights From Statistical Learning Theory |
|
|
6 | (5) |
|
|
11 | (4) |
|
Support Vector Classification |
|
|
15 | (2) |
|
Support Vector Regression |
|
|
17 | (2) |
|
Kernel Principal Component Analysis |
|
|
19 | (2) |
|
Empirical Results and Implementations |
|
|
21 | (2) |
I CONCEPTS AND TOOLS |
|
23 | (164) |
|
|
25 | (36) |
|
|
26 | (3) |
|
The Representation of Similarities in Linear Spaces |
|
|
29 | (16) |
|
Examples and Properties of Kernels |
|
|
45 | (3) |
|
The Representation of Dissimilarities in Linear Spaces |
|
|
48 | (7) |
|
|
55 | (1) |
|
|
55 | (6) |
|
|
61 | (26) |
|
|
62 | (3) |
|
Test Error and Expected Risk |
|
|
65 | (3) |
|
A Statistical Perspective |
|
|
68 | (7) |
|
|
75 | (8) |
|
|
83 | (1) |
|
|
84 | (3) |
|
|
87 | (38) |
|
The Regularized Risk Functional |
|
|
88 | (1) |
|
|
89 | (3) |
|
|
92 | (4) |
|
Translation Invariant Kernels |
|
|
96 | (9) |
|
Translation Invariant Kernels in Higher Dimensions |
|
|
105 | (5) |
|
|
110 | (3) |
|
Multi-Output Regularization |
|
|
113 | (2) |
|
Semiparametric Regularization |
|
|
115 | (3) |
|
Coefficient Based Regularization |
|
|
118 | (3) |
|
|
121 | (1) |
|
|
122 | (3) |
|
Elements of Statistical Learning Theory |
|
|
125 | (24) |
|
|
125 | (3) |
|
|
128 | (3) |
|
When Does Learning Work: the Question of Consistency |
|
|
131 | (1) |
|
Uniform Convergence and Consistency |
|
|
131 | (3) |
|
|
134 | (10) |
|
A Model Selection Example |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
146 | (3) |
|
|
149 | (38) |
|
|
150 | (4) |
|
|
154 | (11) |
|
|
165 | (10) |
|
|
175 | (4) |
|
|
179 | (4) |
|
|
183 | (1) |
|
|
184 | (3) |
II SUPPORT VECTOR MACHINES |
|
187 | (218) |
|
|
189 | (38) |
|
|
189 | (3) |
|
|
192 | (4) |
|
Optimal Margin Hyperplanes |
|
|
196 | (4) |
|
Nonlinear Support Vector Classifiers |
|
|
200 | (4) |
|
|
204 | (7) |
|
Multi-Class Classification |
|
|
211 | (3) |
|
|
214 | (1) |
|
|
215 | (7) |
|
|
222 | (1) |
|
|
222 | (5) |
|
Single-Class Problems: Quantile Estimation and Novelty Detection |
|
|
227 | (24) |
|
|
228 | (1) |
|
A Distribution's Support and Quantiles |
|
|
229 | (1) |
|
|
230 | (4) |
|
|
234 | (2) |
|
|
236 | (5) |
|
|
241 | (2) |
|
|
243 | (4) |
|
|
247 | (1) |
|
|
248 | (3) |
|
|
251 | (28) |
|
Linear Regression with Insensitive Loss Function |
|
|
251 | (3) |
|
|
254 | (6) |
|
|
260 | (6) |
|
Convex Combinations and l1-Norms |
|
|
266 | (3) |
|
Parametric Insensitivity Models |
|
|
269 | (3) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
274 | (5) |
|
|
279 | (54) |
|
|
281 | (7) |
|
Sparse Greedy Matrix Approximation |
|
|
288 | (7) |
|
Interior Point Algorithms |
|
|
295 | (5) |
|
|
300 | (5) |
|
Sequential Minimal Optimization |
|
|
305 | (7) |
|
|
312 | (15) |
|
|
327 | (2) |
|
|
329 | (4) |
|
Incorporating Invariances |
|
|
333 | (26) |
|
|
333 | (2) |
|
Transformation Invariance |
|
|
335 | (2) |
|
|
337 | (6) |
|
Constructing Invariance Kernels |
|
|
343 | (11) |
|
|
354 | (2) |
|
|
356 | (1) |
|
|
357 | (2) |
|
Learning Theory Revisited |
|
|
359 | (46) |
|
Concentration of Measure Inequalities |
|
|
360 | (6) |
|
|
366 | (15) |
|
|
381 | (10) |
|
Operator-Theoretic Methods in Learning Theory |
|
|
391 | (12) |
|
|
403 | (1) |
|
|
404 | (1) |
III KERNEL METHODS |
|
405 | (164) |
|
|
407 | (20) |
|
Tricks for Costructing Kernels |
|
|
408 | (4) |
|
|
412 | (2) |
|
Locality-Improved Kernels |
|
|
414 | (4) |
|
|
418 | (5) |
|
|
423 | (1) |
|
|
423 | (4) |
|
Kernel Feature Extraction |
|
|
427 | (30) |
|
|
427 | (2) |
|
|
429 | (8) |
|
|
437 | (5) |
|
A Framework for Feature Extraction |
|
|
442 | (5) |
|
Algorithms for Sparse KFA |
|
|
447 | (3) |
|
|
450 | (1) |
|
|
451 | (1) |
|
|
452 | (5) |
|
Kernel Fisher Discriminant |
|
|
457 | (12) |
|
|
457 | (1) |
|
Fisher's Discriminant in Feature Space |
|
|
458 | (2) |
|
Efficient Training of Kernel Fisher Discriminants |
|
|
460 | (4) |
|
|
464 | (2) |
|
|
466 | (1) |
|
|
467 | (1) |
|
|
468 | (1) |
|
|
469 | (48) |
|
|
470 | (5) |
|
|
475 | (5) |
|
|
480 | (8) |
|
Implementation of Gaussian Processes |
|
|
488 | (11) |
|
|
499 | (7) |
|
Relevance Vector Machines |
|
|
506 | (5) |
|
|
511 | (2) |
|
|
513 | (4) |
|
Regularized Principal Manifolds |
|
|
517 | (26) |
|
|
518 | (4) |
|
A Regularized Quantization Functional |
|
|
522 | (4) |
|
An Algorithm for Minimizing Rreg[ f] |
|
|
526 | (3) |
|
Connections to Other Algorithms |
|
|
529 | (4) |
|
Uniform Convergence Bounds |
|
|
533 | (4) |
|
|
537 | (2) |
|
|
539 | (1) |
|
|
540 | (3) |
|
Pre-Images and Reduced Set Methods |
|
|
543 | (26) |
|
|
544 | (3) |
|
Finding Approximate Pre-Images |
|
|
547 | (5) |
|
|
552 | (2) |
|
Reduced Set Selection Methods |
|
|
554 | (7) |
|
Reduced Set Construction Methods |
|
|
561 | (3) |
|
Sequential Evaluation of Reduced Set Expansions |
|
|
564 | (2) |
|
|
566 | (1) |
|
|
567 | (2) |
A Addenda |
|
569 | (6) |
|
|
569 | (3) |
|
|
572 | (3) |
B Mathematical Prerequisites |
|
575 | (16) |
|
|
575 | (5) |
|
|
580 | (6) |
|
|
586 | (5) |
References |
|
591 | (26) |
Index |
|
617 | (8) |
Notation and Symbols |
|
625 | |