Muutke küpsiste eelistusi

E-raamat: Lectures on Finite Fields

  • Formaat - PDF+DRM
  • Hind: 110,06 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The theory of finite fields encompasses algebra, combinatorics, and number theory and has furnished widespread applications in other areas of mathematics and computer science. This book is a collection of selected topics in the theory of finite fields and related areas. The topics include basic facts about finite fields, polynomials over finite fields, Gauss sums, algebraic number theory and cyclotomic fields, zeros of polynomials over finite fields, and classical groups over finite fields. The book is mostly self-contained, and the material covered is accessible to readers with the knowledge of graduate algebra; the only exception is a section on function fields. Each chapter is supplied with a set of exercises. The book can be adopted as a text for a second year graduate course or used as a reference by researchers.
Preface vii
Chapter 1 Preliminaries
1(22)
§1.1 Basic Properties of Finite Fields
1(11)
§1.2 Partially Ordered Sets and the Mobius Function
12(11)
Exercises
17(6)
Chapter 2 Polynomials over Finite Fields
23(34)
§2.1 Number of Irreducible Polynomials
23(3)
§2.2 Berlekamp's Factorization Algorithm
26(6)
§2.3 Functions from Fnq to Fq
32(8)
§2.4 Permutation Polynomials
40(6)
§2.5 Linearized Polynomials
46(4)
§2.6 Payne's Theorem
50(7)
Exercises
54(3)
Chapter 3 Gauss Sums
57(20)
§3.1 Characters of Finite Abelian Groups
57(7)
§3.2 Gauss Sums
64(3)
§3.3 The Davenport-Hasse Theorem
67(3)
§3.4 The Gauss Quadratic Sum
70(7)
Exercises
73(4)
Chapter 4 Algebraic Number Theory
77(34)
§4.1 Number Fields
77(10)
§4.2 Ramification and Degree
87(2)
§4.3 Extensions of Number Fields
89(6)
§4.4 Factorization of Primes
95(1)
§4.5 Cyclotomic Fields
96(6)
§4.6 Stickelberger's Congruence
102(9)
Exercises
105(6)
Chapter 5 Zeros of Polynomials over Finite Fields
111(32)
§5.1 Ax's Theorem
111(5)
§5.2 Katz's Theorem
116(3)
§5.3 Bounds on the Number of Zeros of Polynomials
119(8)
§5.4 Bounds Derived from Function Fields
127(16)
Exercises
139(4)
Chapter 6 Classical Groups
143(78)
§6.1 The General Linear Group and Its Related Groups
144(2)
§6.2 Simplicity of PSL(n, F)
146(7)
§6.3 Conjugacy Classes of GL(n, Fq)
153(7)
§6.4 Conjugacy Classes of AGL(n, Fq)
160(12)
§6.5 Bilinear Forms, Hermitian Forms, and Quadratic Forms
172(20)
§6.6 Groups of Spaces Equipped with Forms
192(29)
Exercises
215(6)
Bibliography 221(2)
List of Notation 223(4)
Index 227
Xiang-dong Hou, University of South Florida, Tampa, FL.