Muutke küpsiste eelistusi

E-raamat: Lectures on Mathematical Logic, Volume II

  • Formaat - PDF+DRM
  • Hind: 81,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this volume, logic starts from the observation that in everyday arguments, as brought forward by say a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. The book concludes with the algorithms producing the results of Gentzen's midsequent theorem and Herbrand's theorem for prenex formulas.
Preface ix
Introduction 1(4)
Sequent Calculi for Positive Logic
5(22)
Positive Rules for Deductive Situations
5(3)
The Calculus KsP
8(3)
The Calculi KtP and KuP
11(8)
Inversion Operators
19(2)
Tableaux
21(6)
Cuts
27(19)
Cut Elimination with Exchange Operators
29(15)
Arithmetization
44(2)
Continuous Cut Elimination
46(21)
Explicit Retracing as a Motivation
46(5)
The Reduction Operator Ro
51(12)
The Reduction Operator R1 and the Elimination Operator
63(4)
Sequent Calculi for Minimal and Intuitionistic Logic
67(21)
Negation in Deductive Situations
67(2)
The Calculi KMo of Minimal Logic and KJo of Intuitionistic Logic
69(1)
The Intermediary Calculi KM1, KJ1
70(5)
The Calculi LM and LJ
75(8)
K--Calculi for the Connective ⌝
83(3)
Tableaux
86(2)
Sequent Calculi for Classical Logic
88(38)
The Multiple Calculus MK
91(6)
Cut Elimination with Inversion Rules for MK
97(4)
MK as a Calculus for Classical Logic
101(6)
The Calculi MP, MM and MJ
107(2)
The Peirce Rule
109(10)
Tableaux
119(7)
Classes of Algebras Associated to a Calculus
126(42)
d--Algebras and d--Frames
126(8)
e--Algebras, e--Frames and RPC--Semilattices
134(7)
g--Algebras, g--Frames and RPC--Lattices
141(4)
m--Algebras, m--Frames and m--Lattices
145(6)
i--Algebras, i--Frames and Heyting Algebras
151(6)
c--Algebras, c--Frames and Boolean Algebras
157(4)
Translations from Classical into Intuitionistic Logic
161(7)
Calculi of Formulas
168(34)
Modus Ponens Calculi for Positive Logic
174(7)
Modus Ponens Calculi for Minimal and for Intuitionistic Logic
181(4)
Modus Ponens Calculi for Classical Logic
185(17)
Historical Notes to
Chapters 1--7
196(6)
Sequent Calculi for Quantifier Logic
202(34)
Quantifier Rules for Deductive Situations
202(2)
Sequent Calculi with Q--rules
204(8)
The Replacement Theorem and Cut Elimination for Calculi with rep
212(7)
The Substitution Theorem and Cut Elimination for Calculi with sub
219(2)
The Sets SUB
221(5)
The Substitution Theorem Resumed
226(5)
Cut Elimination Resumed
231(2)
Inversion Rules
233(3)
Semantical Consequence Operations and Modus Ponens Calculi
236(20)
The Calculi cxqt and cxqs
236(4)
The Variants cxqto of cxqt
240(3)
The Variants cxqt1 and cxqt2 of cxqt
243(2)
The Calculi cxqsi
245(3)
The Deduction Theorem and Other Metarules for the Calculi ccqti
248(2)
Tautologies of Positive Quantifier Logic
250(2)
Tautologies of Minimal Quantifier Logic
252(1)
Tautologies of Classical Quantifier Logic
253(3)
Selected Topics in Sequential Quantifier Logic
256(61)
Translating Between Sequential and Modus Ponens Calculi
256(3)
Relations between Classical and Intuitionistic Derivability
259(4)
Equality Logic
263(7)
Language Extensions with Predicate Symbols
270(4)
Language Extensions with Function Symbols 1
274(11)
Language Extensions with Function Symbols 2
285(3)
The Midsequent Theorem
288(10)
Herbrand's Theorem for Prenex Formulas
298(7)
Tableaux
305(12)
Index of concepts and names 317(4)
Index of symbolic notations 321


Felscher, Walter