|
|
|
|
3 | (28) |
|
|
3 | (2) |
|
|
5 | (11) |
|
1.3 Topological Properties |
|
|
16 | (5) |
|
|
21 | (4) |
|
|
25 | (1) |
|
|
26 | (5) |
|
|
31 | (18) |
|
2.1 The Exponential of a Matrix |
|
|
31 | (3) |
|
2.2 Computing the Exponential |
|
|
34 | (2) |
|
|
36 | (4) |
|
2.4 Further Properties of the Exponential |
|
|
40 | (2) |
|
2.5 The Polar Decomposition |
|
|
42 | (4) |
|
|
46 | (3) |
|
|
49 | (28) |
|
3.1 Definitions and First Examples |
|
|
49 | (4) |
|
3.2 Simple, Solvable, and Nilpotent Lie Algebras |
|
|
53 | (2) |
|
3.3 The Lie Algebra of a Matrix Lie Group |
|
|
55 | (2) |
|
|
57 | (3) |
|
3.5 Lie Group and Lie Algebra Homomorphisms |
|
|
60 | (5) |
|
3.6 The Complexification of a Real Lie Algebra |
|
|
65 | (2) |
|
|
67 | (3) |
|
3.8 Consequences of Theorem 3.42 |
|
|
70 | (3) |
|
|
73 | (4) |
|
4 Basic Representation Theory |
|
|
77 | (32) |
|
|
77 | (4) |
|
4.2 Examples of Representations |
|
|
81 | (3) |
|
4.3 New Representations from Old |
|
|
84 | (6) |
|
4.4 Complete Reducibility |
|
|
90 | (4) |
|
|
94 | (2) |
|
4.6 Representations of sl(2; C) |
|
|
96 | (5) |
|
4.7 Group Versus Lie Algebra Representations |
|
|
101 | (2) |
|
4.8 A Nonmatrix Lie Group |
|
|
103 | (2) |
|
|
105 | (4) |
|
5 The Baker--Campbell--Hausdorff Formula and Its Consequences |
|
|
109 | (32) |
|
|
109 | (1) |
|
5.2 An Illustrative Example |
|
|
110 | (3) |
|
5.3 The Baker--Campbell--Hausdorff Formula |
|
|
113 | (1) |
|
5.4 The Derivative of the Exponential Map |
|
|
114 | (3) |
|
5.5 Proof of the BCH Formula |
|
|
117 | (1) |
|
5.6 The Series Form of the BCH Formula |
|
|
118 | (1) |
|
5.7 Group Versus Lie Algebra Homomorphisms |
|
|
119 | (7) |
|
|
126 | (2) |
|
5.9 Subgroups and Subalgebras |
|
|
128 | (7) |
|
|
135 | (1) |
|
|
135 | (6) |
|
Part II Semisimple Lie Algebras |
|
|
|
6 The Representations of sl(3; C) |
|
|
141 | (28) |
|
|
141 | (1) |
|
|
142 | (4) |
|
6.3 The Theorem of the Highest Weight |
|
|
146 | (2) |
|
|
148 | (5) |
|
6.5 An Example: Highest Weight (1,1) |
|
|
153 | (1) |
|
|
154 | (4) |
|
|
158 | (1) |
|
6.8 Further Properties of the Representations |
|
|
159 | (6) |
|
|
165 | (4) |
|
7 Semisimple Lie Algebras |
|
|
169 | (28) |
|
7.1 Semisimple and Reductive Lie Algebras |
|
|
169 | (5) |
|
|
174 | (2) |
|
7.3 Roots and Root Spaces |
|
|
176 | (6) |
|
|
182 | (1) |
|
|
183 | (2) |
|
|
185 | (3) |
|
7.7 The Root Systems of the Classical Lie Algebras |
|
|
188 | (5) |
|
|
193 | (4) |
|
|
197 | (44) |
|
8.1 Abstract Root Systems |
|
|
197 | (4) |
|
|
201 | (3) |
|
|
204 | (2) |
|
8.4 Bases and Weyl Chambers |
|
|
206 | (6) |
|
8.5 Weyl Chambers and the Weyl Group |
|
|
212 | (4) |
|
|
216 | (2) |
|
8.7 Integral and Dominant Integral Elements |
|
|
218 | (3) |
|
|
221 | (7) |
|
8.9 Examples in Rank Three |
|
|
228 | (4) |
|
8.10 The Classical Root Systems |
|
|
232 | (4) |
|
|
236 | (2) |
|
|
238 | (3) |
|
9 Representations of Semisimple Lie Algebras |
|
|
241 | (24) |
|
9.1 Weights of Representations |
|
|
242 | (2) |
|
9.2 Introduction to Verma Modules |
|
|
244 | (2) |
|
9.3 Universal Enveloping Algebras |
|
|
246 | (4) |
|
9.4 Proof of the PBW Theorem |
|
|
250 | (4) |
|
9.5 Construction of Verma Modules |
|
|
254 | (3) |
|
9.6 Irreducible Quotient Modules |
|
|
257 | (3) |
|
9.7 Finite-Dimensional Quotient Modules |
|
|
260 | (3) |
|
|
263 | (2) |
|
10 Further Properties of the Representations |
|
|
265 | (42) |
|
10.1 The Structure of the Weights |
|
|
265 | (4) |
|
|
269 | (4) |
|
10.3 Complete Reducibility |
|
|
273 | (2) |
|
10.4 The Weyl Character Formula |
|
|
275 | (6) |
|
10.5 The Weyl Dimension Formula |
|
|
281 | (6) |
|
10.6 The Kostant Multiplicity Formula |
|
|
287 | (7) |
|
10.7 The Character Formula for Verma Modules |
|
|
294 | (1) |
|
10.8 Proof of the Character Formula |
|
|
295 | (8) |
|
|
303 | (4) |
|
Part III Compact Lie Groups |
|
|
|
11 Compact Lie Groups and Maximal Tori |
|
|
307 | (36) |
|
|
308 | (4) |
|
11.2 Maximal Tori and the Weyl Group |
|
|
312 | (3) |
|
|
315 | (6) |
|
|
321 | (5) |
|
11.5 Proof of the Torus Theorem |
|
|
326 | (4) |
|
11.6 The Weyl Integral Formula |
|
|
330 | (3) |
|
11.7 Roots and the Structure of the Weyl Group |
|
|
333 | (6) |
|
|
339 | (4) |
|
12 The Compact Group Approach to Representation Theory |
|
|
343 | (28) |
|
|
343 | (3) |
|
12.2 Analytically Integral Elements |
|
|
346 | (5) |
|
12.3 Orthonormality and Completeness for Characters |
|
|
351 | (6) |
|
12.4 The Analytic Proof of the Weyl Character Formula |
|
|
357 | (4) |
|
12.5 Constructing the Representations |
|
|
361 | (5) |
|
12.6 The Case in Which S is Not Analytically Integral |
|
|
366 | (3) |
|
|
369 | (2) |
|
13 Fundamental Groups of Compact Lie Groups |
|
|
371 | |
|
13.1 The Fundamental Group |
|
|
371 | (2) |
|
13.2 Fundamental Groups of Compact Classical Groups |
|
|
373 | (4) |
|
13.3 Fundamental Groups of Noncompact Classical Groups |
|
|
377 | (1) |
|
13.4 The Fundamental Groups of K and T |
|
|
377 | (6) |
|
|
383 | (6) |
|
|
389 | (5) |
|
13.7 Proofs of the Main Theorems |
|
|
394 | (5) |
|
|
399 | (4) |
|
|
403 | |
|
|
1 | (442) |
|
|
407 | (12) |
|
A.1 Eigenvectors and Eigenvalues |
|
|
407 | (1) |
|
|
408 | (1) |
|
A.3 Generalized Eigenvectors and the SN Decomposition |
|
|
409 | (2) |
|
A.4 The Jordan Canonical Form |
|
|
411 | (1) |
|
|
411 | (1) |
|
|
412 | (2) |
|
|
414 | (1) |
|
A.8 Simultaneous Diagonalization |
|
|
415 | (4) |
|
|
419 | (6) |
|
C Clebsch--Gordan Theory and the Wigner--Eckart Theorem |
|
|
425 | (10) |
|
C.1 Tensor Products of sl(2; C) Representations |
|
|
425 | (3) |
|
C.2 The Wigner-Eckart Theorem |
|
|
428 | (4) |
|
C.3 More on Vector Operators |
|
|
432 | (3) |
|
D Completeness of Characters |
|
|
435 | (8) |
References |
|
443 | (2) |
Index |
|
445 | |