Muutke küpsiste eelistusi

E-raamat: Light Propagation in Gain Media: Optical Amplifiers

(Monash University, Victoria), (University of Rochester, New York)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Feb-2011
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139005791
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 111,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Feb-2011
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139005791
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Over the past two decades, optical amplifiers have become of key importance in modern communications. In addition to this, the technology has applications in cutting-edge research such as biophotonics and lab-on-a-chip devices. This book provides a comprehensive treatment of the fundamental concepts, theory and analytical techniques behind the modern optical amplifier technology. The book covers all major optical amplification schemes in conventional materials, including the Raman and parametric gain processes. The final chapter is devoted to optical gain in metamaterials, a topic that has been attracting considerable attention in recent years. The authors emphasize analytical insights to give a deeper, more intuitive understanding of various amplification schemes. The book assumes background knowledge of electrical engineering or applied physics, including exposure to electrodynamics and wave motion, and is ideal for graduate students and researchers in physics, optics, bio-optics and communications"--

Provided by publisher.

Muu info

Covers the concepts, theory and techniques of modern optical amplifier technology, for graduates and researchers in physics, optics and communications.
Preface xi
1 Introduction
1(27)
1.1 Maxwell's equations
2(7)
1.2 Permittivity of isotropic materials
9(3)
1.3 Dispersion relations
12(7)
1.4 Causality and its implications
19(3)
1.5 Simple solutions of Maxwell's equations
22(4)
References
26(2)
2 Light propagation through dispersive dielectric slabs
28(35)
2.1 State of polarization of optical waves
29(2)
2.2 Impedance and refractive index
31(2)
2.3 Fresnel equations
33(4)
2.4 Propagation of optical pulses
37(5)
2.5 Finite-difference time-domain (FDTD) method
42(11)
2.6 Phase and group velocities
53(3)
2.7 Pulse propagation through a dielectric slab
56(4)
References
60(3)
3 Interaction of light with generic active media
63(25)
3.1 Reflection of light from a gain medium
64(5)
3.2 Surface-plasmon polaritons
69(6)
3.3 Gain-assisted management of group velocity
75(4)
3.4 Gain-assisted dispersion control
79(6)
References
85(3)
4 Optical Bloch equations
88(25)
4.1 The bra and ket vectors
89(2)
4.2 Density operator
91(2)
4.3 Density-matrix equations for two-level atoms
93(8)
4.4 Optical Bloch equations
101(3)
4.5 Maxwell---Bloch equations
104(3)
4.6 Numerical integration of Maxwell---Bloch equations
107(4)
References
111(2)
5 Fiber amplifiers
113(30)
5.1 Erbium-doped fiber amplifiers
114(2)
5.2 Amplifier gain and its bandwidth
116(3)
5.3 Rate equations for EDFAs
119(3)
5.4 Amplification under CW conditions
122(2)
5.5 Amplification of picosecond pulses
124(7)
5.6 Autosolitons and similaritons
131(7)
5.7 Amplification of femtosecond pulses
138(2)
References
140(3)
6 Semiconductor optical amplifiers
143(30)
6.1 Material aspects of SOAs
144(3)
6.2 Carrier density and optical gain
147(4)
6.3 Picosecond pulse amplification
151(13)
6.4 Femtosecond pulse amplification
164(7)
References
171(2)
7 Raman amplifiers
173(35)
7.1 Raman effect
174(3)
7.2 Raman gain spectrum of optical fibers
177(6)
7.3 Fiber Raman amplifiers
183(5)
7.4 Silicon Raman amplifiers
188(17)
References
205(3)
8 Optical parametric amplifiers
208(29)
8.1 Physics behind parametric amplification
208(3)
8.2 Phase-matching condition
211(1)
8.3 Four-wave mixing in optical fibers
212(12)
8.4 Three-wave mixing in birefringent crystals
224(5)
8.5 Phase matching in birefringent fibers
229(6)
References
235(2)
9 Gain in optical metamaterials
237(28)
9.1 Classification of metamaterials
238(3)
9.2 Schemes for loss compensation in metamaterials
241(5)
9.3 Amplification through three-wave mixing
246(4)
9.4 Resonant four-wave mixing using dopants
250(5)
9.5 Backward self-induced transparency
255(7)
References
262(3)
Index 265
Malin Premaratne is Research Director and Associate Professor in the Advanced Computing and Simulation Laboratory, Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Australia. He guides the research program in theory, modeling and simulation of light propagation in guided and scattering media. Govind P. Agrawal is Professor of Optics and Physics in the Institute of Optics, University of Rochester, USA. His current research interests include optical communications, nonlinear optics and laser physics.