Muutke küpsiste eelistusi

E-raamat: Lightning Interaction with Power Systems: Fundamentals and modelling, Volume 1

Edited by (University of São Paulo, Brazil)
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 05-Mar-2020
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781839530913
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 05-Mar-2020
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781839530913
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The need to improve the reliability and robustness of power systems and smart grids makes protection of sensitive equipment and power transmission and distribution lines against lightning-related effects a primary concern. Renewable electricity generation capacity has been increasing all over the world, and lightning can cause failures either by hitting the turbines or panels directly or inducing transients on the control systems that lead to equipment failure, malfunction or degradation.

This two-volume set assesses how global lightning may respond to global climate change, provides thorough coverage of the lightning phenomenon and its interaction with various objects, and covers methods for the effective protection of structures and systems. It is a valuable reference for researchers in the fields of lightning and power systems, for transmission and distribution line engineers and designers, and is a useful text for related advanced courses.

Volume 1 covers fundamentals and modelling of lightning interaction with power systems, including lightning and climate change; lightning phenomenon and parameters for engineering applications; lightning return stroke models for electromagnetic field calculations; lightning geolocation information for power system analyses; lightning attachment to overhead power lines; field-to-transmission line coupling models; lightning response of grounding electrodes; surge protective devices; modelling of power transmission line components; and modelling of power distribution components. Volume 2 addresses various applications including power substations, transmission lines, overhead distribution systems and networks, smart grids, and wind and photovoltaic systems.



This book assesses how global lightning may respond to global climate change, provides thorough coverage of the lightning phenomenon and its interaction with various objects, and covers methods for the effective protection of structures and systems.

About the editor xiii
Preface xv
Acknowledgements xix
About the authors xxi
1 Lightning and climate change 1(46)
Earle R. Williams
1.1 Introduction
1(3)
1.2 Basics of thunderstorm electrification and lightning
4(1)
1.3 Thermodynamic control on lightning activity
5(9)
1.3.1 Temperature
5(1)
1.3.2 Dew point temperature
5(1)
1.3.3 Water vapor and the Clausius-Clapeyron relationship
5(2)
1.3.4 Convective available potential energy and its temperature dependence
7(2)
1.3.5 Cloud base height and its influence on cloud microphysics
9(3)
1.3.6 Balance level considerations in deep convection
12(2)
1.3.7 Baroclinicity
14(1)
1.4 Global lightning response to temperature on different time scales
14(8)
1.4.1 Diurnal variation
15(1)
1.4.2 Semiannual variation
15(2)
1.4.3 Annual variation
17(1)
1.4.4 ENSO
18(2)
1.4.5 Decadal time scale
20(1)
1.4.6 Multi-decadal time scale
20(2)
1.5 Aerosol influence on moist convection and lightning activity
22(3)
1.5.1 Basic concepts
22(2)
1.5.2 Observational support
24(1)
1.6 Nocturnal thunderstorms
25(2)
1.7 Meteorological control on lightning type
27(1)
1.8 The global circuits as monitors for destructive lightning and climate change
28(2)
1.9 Expectations for the future
30(1)
References
31(16)
2 Lightning phenomenon and parameters for engineering application 47(54)
Vladimir A. Rakov
2.1 Types of lightning and main lightning processes
47(12)
2.1.1 Overview
47(3)
2.1.2 Downward negative lightning
50(3)
2.1.3 Downward positive lightning
53(2)
2.1.4 Artificially initiated lightning
55(3)
2.1.5 Upward lightning
58(1)
2.2 Number of strokes per flash
59(1)
2.3 Interstroke intervals and flash duration
60(1)
2.4 Multiple channel terminations on ground
61(2)
2.5 Relative stroke intensity within the flash
63(3)
2.6 Return-stroke peak current-"classical" distributions
66(8)
2.7 Return-stroke peak current-recent direct measurements
74(3)
2.8 Current waveshape parameters
77(3)
2.9 Correlations between the parameters
80(2)
2.10 Return-stroke propagation speed
82(2)
2.11 Equivalent impedance of the lightning channel
84(3)
2.12 Mathematical expressions for the lightning current waveform
87(1)
2.13 Summary
88(2)
2.14 Future work
90(1)
Acknowledgments
91(1)
References
91(10)
3 Lightning return stroke models for electromagnetic field calculations 101(32)
Vernon Cooray
3.1 Introduction
101(2)
3.2 Basic concept of current propagation models
103(1)
3.3 Basic concepts of current generation models
104(4)
3.3.1 Input parameters of the CG models and the expression for the current at any height
106(1)
3.3.2 Evaluate t(z) given Ib(t), p(z) and v(z)
107(1)
3.3.3 Evaluate p(z) given Ib(t), t(z) and v(z)
108(1)
3.3.4 Evaluate v(z), given Ib(t), p(z) and t(z)
108(1)
3.4 Basic concepts of current dissipation models
108(3)
3.4.1 Input parameters of the CD models
110(1)
3.4.2 The connection between the channel base current (or injected current) and the corona current
110(1)
3.5 Generalization of any model to current generation or current dissipation type
111(1)
3.6 Current propagation models as a special case of current dissipation models
112(2)
3.7 Physical basis of CD and CG models and a return stroke model based on their combination
114(1)
3.8 Electromagnetic fields from lightning return strokes
115(8)
3.9 Calculation of lightning return stroke electromagnetic fields over ground
123(4)
3.10 Final comments and conclusions
127(1)
References
128(5)
4 Lightning geolocation information for power system analyses 133(32)
Wolfgang Schulz
Amitabh Nag
4.1 Introduction to ground flash density calculation
134(2)
4.2 Standards and techniques recommended by the IEC 62858
136(3)
4.2.1 Ground flash density from LLS
136(2)
4.2.2 Ground strike point density
138(1)
4.3 Lightning locating systems
139(16)
4.3.1 Lightning geolocation techniques
139(3)
4.3.2 Estimation of peak currents from measured electromagnetic fields
142(1)
4.3.3 Modern precision lightning locating systems
143(7)
4.3.4 Modern long-range lightning locating systems
150(1)
4.3.5 Validation of LLS performance characteristics using ground-truth-data
151(4)
References
155(10)
5 Lightning attachment to overhead power lines 165(52)
Pantelis N. Mikropoulos
Jinliang He
Marina Bernardi
5.1 Lightning attachment
166(1)
5.2 Lightning attachment models
167(26)
5.2.1 Electrogeometric models
167(14)
5.2.2 Leader propagation models
181(12)
5.3 Lightning incidence due to direct lightning strokes
193(15)
5.3.1 Definitions and terminology
194(1)
5.3.2 Lightning stroke collection rate of shield wire(s)
195(7)
5.3.3 Lightning stroke collection rate of phase conductors (shielding failure rate)
202(4)
5.3.4 Concluding remarks on lightning incidence due to direct lightning strokes
206(2)
References
208(9)
6 Field-to-transmission line coupling models 217(34)
Vernon Cooray
Carlo Alberto Nucci
Alexandre Piantini
Farhad Rachidi
Marcos Rubinstein
6.1 Introduction (TL approximation, QS approximation, and full-wave approach)
218(1)
6.2 Field-to-transmission line coupling models for overhead lines
219(17)
6.2.1 Derivation of the generalized Telegrapher's equations for the model of Taylor et al.
220(5)
6.2.2 Equivalent circuit
225(1)
6.2.3 The model of Agrawal, Price, and Gurbaxani
225(2)
6.2.4 The Rachidi model
227(2)
6.2.5 Rusck/modified Rusck model
229(1)
6.2.6 Finite ground and medium conductivity
230(3)
6.2.7 Multiconductor lines
233(2)
6.2.8 Equivalence of the coupling models
235(1)
6.2.9 Source terms in field-to-transmission line coupling models
236(1)
6.3 Field-to-transmission coupling models for buried cables
236(6)
6.3.1 Preliminary remarks
236(1)
6.3.2 Calculation of the lightning electric field under the ground
237(2)
6.3.3 Coupling to buried cables
239(3)
6.4 Coupling equations in time domain
242(1)
6.5 Experimental validation
242(3)
References
245(6)
7 Lightning response of grounding electrodes 251(36)
Silverio Visacro
7.1 Basic concepts
252(2)
7.1.1 Characterizing grounding systems
252(1)
7.1.2 Simplified representation of grounding system by equivalent circuits
253(1)
7.2 The frequency response of grounding systems: a qualitative approach
254(6)
7.2.1 Introduction
254(1)
7.2.2 The harmonic impedance
255(1)
7.2.3 The low-frequency resistance
256(1)
7.2.4 Propagation effects
257(1)
7.2.5 The frequency dependence of soil resistivity and permittivity
258(2)
7.3 The impulse response of grounding electrodes
260(9)
7.3.1 Fundamental aspects of the impulse response of electrodes and impulse grounding impedance
260(4)
7.3.2 Attenuation of impulsive currents propagating along electrodes and effective length
264(1)
7.3.3 The impulse coefficient
265(2)
7.3.4 Soil ionization effect
267(2)
7.4 Response of grounding electrodes subjected to lightning currents
269(6)
7.4.1 Introduction
269(1)
7.4.2 Characteristics of return stroke currents
269(1)
7.4.3 Lightning response of grounding electrodes
270(3)
7.4.4 Effective length of electrodes for lightning currents
273(1)
7.4.5 Remarks on the frequency dependence and soil ionization effects
274(1)
7.5 Representation of grounding systems in lightning protection studies
275(7)
7.5.1 Introduction
275(1)
7.5.2 Using Zp as a concise representation of grounding electrodes subject to lightning currents
276(3)
7.5.3 When using Zp to represent the grounding system: applications
279(1)
7.5.4 How to determine the impulse impedance
280(2)
References
282(5)
8 Surge-protective devices 287(58)
Georgij V. Podporkin
Martin Wetter
Holger Heckler
8.1 Common definitions and general function principle of SPDs used in HV, MV and LV systems
288(3)
8.1.1 Common definitions
288(1)
8.1.2 General function principle
288(3)
8.2 SPDs used in transmission and distribution (HV and MV) overhead lines
291(20)
8.2.1 Metal oxide arresters
291(2)
8.2.2 Multi-chamber arresters
293(10)
8.2.3 Multi-chamber insulator arresters
303(4)
8.2.4 Arc-quenching tests
307(4)
8.3 SPDs for LV power systems
311(31)
8.3.1 Terms and definitions
311(3)
8.3.2 Standards
314(1)
8.3.3 Introduction to surge protection for LV power systems
315(3)
8.3.4 Multi-stage surge protection schemes
318(1)
8.3.5 Lightning protection zones
319(1)
8.3.6 Types of SPDs
320(1)
8.3.7 Surge-protective components
321(12)
8.3.8 Series and parallel connection of surge-protective components
333(3)
8.3.9 Connection types of SPDs
336(3)
8.3.10 Inspection and field-testing of SPDs
339(1)
8.3.11 Test generators and test facilities for type testing
340(1)
8.3.12 Approvals from certified bodies
340(2)
References
342(3)
9 Modelling of power transmission line components 345(36)
Alberto De Conti
Fernando H. Silveira
9.1 Transmission lines
347(5)
9.1.1 Transmission line equations
347(1)
9.1.2 Calculation of per-unit-length parameters
347(3)
9.1.3 Frequency-domain solution of the transmission line equations
350(1)
9.1.4 Time-domain solution of the transmission line equations
350(2)
9.2 Transmission towers
352(9)
9.2.1 Overview
352(1)
9.2.2 Travelling wave analysis of a lightning strike to a tower
352(2)
9.2.3 Tower models
354(5)
9.2.4 Example
359(1)
9.2.5 Discussion
360(1)
9.3 Grounding
361(5)
9.3.1 Overview
361(1)
9.3.2 Lumped-circuit representation
362(1)
9.3.3 Distributed-circuit representation
363(2)
9.3.4 N-port linear circuit model based on rational approximations
365(1)
9.4 Insulator strings
366(4)
9.4.1 Introduction
366(1)
9.4.2 Flashover models
366(4)
9.4.3 Final remarks
370(1)
9.5 Surge arresters
370(3)
9.5.1 Introduction
370(1)
9.5.2 Conventional model
371(1)
9.5.3 IEEE model
372(1)
9.5.4 Pinceti-Giannettoni model
373(1)
9.6 Summary
373(1)
References
374(7)
10 Modelling of power distribution components 381(32)
Alexandre Piantini
Miltom Shigihara
Acacio Silva Neto
10.1 Typical network configurations
382(3)
10.1.1 MV networks
382(1)
10.1.2 LV networks
383(2)
10.2 Modelling of distribution system components
385(19)
10.2.1 Poles
385(1)
10.2.2 Distribution transformers
385(5)
10.2.3 Insulators
390(6)
10.2.4 Surge arresters and LV SPDs
396(4)
10.2.5 Grounding
400(1)
10.2.6 Loads
401(3)
10.3 Concluding remarks
404(1)
References
404(9)
Index 413
Alexandre Piantini is a Professor at the University of São Paulo, Brazil, where he heads the Lightning and High Voltage Research Centre.