Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.





A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the PerronFrobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.





Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Pythons libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.
Mathematics and Python.- Linear Spaces and Linear Mappings.- Basis and
Dimension.- Matrices.- Elementary Operations and Matrix Invariants.- Inner
Product and Fourier Expansion.- Eigenvalues and Eigenvectors.- Jordan Normal
Form and Spectrum.- Dynamical Systems.- Applications and Development of
Linear Algebra.
Makoto Tsukada has been studied in the field of functional analysis. He has been teaching linear algebra, analysis, and probability theory for many years. Also, he has taught programming language courses using Pascal, Prolog, C, Python, etc. Yuji Kobayashi, Hiroshi Kaneko, Sin-Ei Takahasi, Kiyoshi Shirayanagi, and Masato Noguchi are specialists in algebra, analysis, statistics, and computers.