Muutke küpsiste eelistusi

E-raamat: Linear Circuit Theory: Matrices in Computer Applications

(University of Waterloo, Ontario, Canada)
  • Formaat: 464 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: Apple Academic Press Inc.
  • Keel: eng
  • ISBN-13: 9781482219616
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 111,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 464 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: Apple Academic Press Inc.
  • Keel: eng
  • ISBN-13: 9781482219616
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This comprehensive textbook covers all subjects on linear circuit theory, with the emphasis on learning the subject without an excessive amount of information. This unique approach stresses knowledge rather than computer use to start and differs from other books by introducing matrix algebra early in the book. The book’s 290 problems are meant to be solved using matrix algebra, which provides the reader with a strong foundation on which to build.

Preface xiii
1 Basic Concepts 1(37)
Introduction
1(1)
1.1 Voltages and currents
1(3)
1.2 Network elements
4(7)
1.2.1 Independent voltage and current sources
4(1)
1.2.2 Resistor
5(1)
1.2.3 Capacitor
6(1)
1.2.4 Inductor
6(1)
1.2.5 Dependent sources
7(1)
1.2.6 Transformer
8(1)
1.2.7 Operational amplifier
8(1)
1.2.8 Other elements
9(1)
1.2.9 Units and their prefixes
9(1)
1.2.10 Examples of networks
10(1)
1.3 Independent voltage and current sources
11(5)
1.4 Resistors and Ohm'slaw
16(2)
1.5 Power and energy
18(2)
1.6 Kirchhoff's Laws
20(5)
1.6.1 Kirchhoff current law
21(1)
1.6.2 Kirchhof voltage law
22(3)
1.7 Connections of resistors
25(7)
Problems
32(6)
2 Nodal And Mesh Analysis 38(16)
Introduction
38(1)
2.1 Nodal analysis
38(7)
2.2 Mesh analysis
45(5)
Problems
50(4)
3 Matrix Methods 54(25)
Inroduction
54(1)
3.1 Linear equations in matrix form
54(3)
3.2 Determinants
57(2)
3.3 Matrix inversion
59(3)
3.4 Cramer's rule
62(4)
3.5 Expansion of determinants
66(3)
3.6 Solutions of resistive networks
69(6)
Problems
75(4)
4 Dependent Sources 79(28)
Introduction
79(1)
4.1 Voltage controlled current source
79(6)
4.2 Current controlled voltage source
85(6)
4.3 Current controlled current source
91(5)
4.4 Voltage controlled voltage source
96(6)
4.5 Summary of dependent sources
102(1)
Problems
103(4)
5 Network Transformations 107(35)
Introduction
107(1)
5.1 Transformations of sources
107(6)
5.2 Transformations of controlling terminals
113(2)
5.3 Splitting of sources
115(5)
5.4 Superposition principle
120(2)
5.5 Input and output resistance
122(3)
5.6 Thevenin and Norton theorems
125(5)
5.7 Operational amplifiers
130(6)
5.8 Recommendations
136(1)
Problems
137(5)
6 Capacitors And Inductors 142(10)
Introduction
142(1)
6.1 Capacitors
142(2)
6.2 Connections of capacitors
144(2)
6.3 Inductors
146(3)
6.4 Connections of inductors
149(2)
Problems
151(1)
7 Networks With Capacitors And Inductors 152(22)
Introduction
152(1)
7.1 Impedances and admittances
152(2)
7.2 Networks with capacitors
154(6)
7.3 Networks with inductors
160(5)
7.4 Networks with capacitors and inductors
165(5)
Problems
170(4)
8 Frequency Domain 174(46)
Introduction
174(1)
8.1 Sinusoidal signals and phasors
174(11)
8.2 Frequencydomain analysis
185(9)
8.3 RC and RL networks
194(6)
8.4 RLC networks
200(9)
8.5 Phasors and power
209(7)
Problems
216(4)
9 Laplace Transformation 220(28)
Introduction
220(1)
9.1 Definition of the Laplace transformation
220(1)
9.2 Simple functions and their transformations
221(4)
9.3 Rational functions with simple poles
225(9)
9.3.1 Decomposition using real arithmetic
227(2)
9.3.2 Decomposition using complexarithmetic
229(1)
9.3.3 Residues of simple poles
230(4)
9.4 Decomposition with multiple poles
234(2)
9.5 Laplace transform operations
236(8)
9.5.1 Differentiation
236(3)
9.5.2 Integration
239(1)
9.5.3 Initial and final value theorems
240(2)
9.5.4 Scaling in the time domain
242(1)
9.5.5 Delay
242(2)
9.6 Signals and networks
244(2)
Problems
246(2)
10 Time Domain 248(33)
Introduction
248(1)
10.1 Networks with capacitors
248(17)
10.1.1 Capacitors without initial conditions
249(7)
10.1.2 Capacitors with intitial conditions
256(9)
10.2 Networks with inductors
265(9)
10.2.1 Inductors without initial conditions
265(4)
10.2.2 Inductors with initial conditions
269(5)
10.3 RLC circuits
274(4)
Problems
278(3)
11 Network Functions 281(18)
Introduction
281(1)
11.1 Definition of network functions
281(7)
11.2 Poles, zeros and stability
288(4)
11.3 Frequency responses from poles and zeros
292(4)
Problems
296(3)
12 Active Networks 299(29)
Introduction
299(1)
12.1 Amplifiers and operational amplifiers
299(2)
12.2 Principles of active network analysis
301(1)
12.3 Networks with finite-gain amplifiers
302(7)
12.4 Networks with ideal opamps
309(5)
12.5 Networks with nonideal opamps
314(5)
12.6 Practical use of RC active networks
319(5)
Problems
324(4)
13 Two-Ports 328(11)
Introduction
328(1)
13.1 Definition of two-ports
328(8)
13.1.1 Impedance parameters
329(4)
13.1.2 Admittance parameters
333(3)
13.2 Two-ports with load
336(2)
Problems
338(1)
14 Transformers 339(21)
Introduction
339(1)
14.1 Principle of transformers
339(4)
14.2 Coupling coefficient
343(2)
14.3 Perfect and ideal transformers
345(2)
14.4 Networks with transformers
347(4)
14.5 Equivalent transformer networks
351(4)
14.6 Double tuned circuits
355(2)
Problems
357(3)
15 Modeling 360(31)
Introduction
360(1)
15.1 Modeling of sources
360(3)
15.2 Linear amplifiers
363(3)
15.3 Linear transistor models
366(4)
15.3.1 Field-effect transistor
366(1)
15.3.2 Bipolar transistor
367(3)
15.4 Nonlinear elements
370(4)
15.4.1 Diode
372(1)
15.4.2 Field-effect transistor
373(1)
15.5 Networks with nonlinear elements
374(3)
15.6 Newton-Raphson iterative method
377(5)
15.7 Solutions of nonlinear networks
382(5)
15.8 Numerical time domain responses
387(2)
Problems
389(2)
16 Sensitivities 391(23)
Introduction
391(1)
16.1 Motivation
391(2)
16.2 Definition of sensitities
393(2)
16.3 Sensititivites of tuned circuits
395(2)
16.4 Network funnktion sensitivity
397(6)
16.5 Sensitivities of Q and coo
403(5)
16.6 Sensitivity of poles and zeros
408(3)
16.7 Sensitivities of operational amplifiers
411(1)
Problems
412(2)
17 Modified Nodal Formulation 414(21)
Introduction
414(1)
17.1 Passive elements
414(5)
17.2 Independent sources
419(2)
17.3 Controlled sources
421(4)
17.4 Special elements
425(4)
17.4.1 Ideal Operational Amplifier
426(1)
17.4.2 Transformer with twocoils
427(2)
17.5 Computer application
429(3)
Problems
432(3)
18 Fourier Series And Transformation 435(11)
Introduction
435(1)
18.1 Fourier series
435(6)
18.2 Fourier integral
441(5)
Appendix 446(2)
Index 448
Vlach, Jiri||