Muutke küpsiste eelistusi

E-raamat: Linear Holomorphic Partial Differential Equations and Classical Potential Theory

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 161,77 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Why do solutions of linear analytic PDE suddenly break down? What is the source of these mysterious singularities, and how do they propagate? Is there a mean value property for harmonic functions in ellipsoids similar to that for balls? Is there a reflection principle for harmonic functions in higher dimensions similar to the Schwarz reflection principle in the plane? How far outside of their natural domains can solutions of the Dirichlet problem be extended? Where do the continued solutions become singular and why? This book invites graduate students and young analysts to explore these and many other intriguing questions that lead to beautiful results illustrating a nice interplay between parts of modern analysis and themes in ``physical'' mathematics of the nineteenth century. To make the book accessible to a wide audience including students, the authors do not assume expertise in the theory of holomorphic PDE, and most of the book is accessible to anyone familiar with multivariable calculus and some basics in complex analysis and differential equations.
Introduction:
Some motivating questions;
The Cauchy-Kovalevskaya theorem with estimates;
Remarks on the Cauchy-Kovalevskaya theorem;
Zerner's theorem;
The method of globalizing families;
Holmgren's uniqueness theorem;
The continuity method of F. John;
The Bony-Schapira theorem;
Applications of the Bony-Schapira theorem: Part I - Vekua hulls;
Applications of the Bony-Schapira theorem: Part II - Szego's theorem
revisited;
The reflection principle; The reflection principle (continued);
Cauchy problems and the Schwarz potential conjecture;
The Schwarz potential conjecture for spheres;
Potential theory on ellipsoids: Part I - The mean value property;
Potential theory on ellipsoids: Part II - There is no gravity in the cavity;

Potential theory on ellipsoids: Part III - The Dirichlet problem;
Singularities encountered by the analytic continuation of solutions to the
Dirichlet problem;
An introduction to J. Leray's principle on propagation of singularities
through $\mathbb{C}^n$;
Global propagation of singularities in $\mathbb{C}^n$;
Quadrature domains and Laplacian growth;
Other varieties of quadrature domains;
Bibliography;
Index.