Preface |
|
ix | |
|
|
1 | (14) |
|
|
1 | (1) |
|
1.2 Initial Data Analysis |
|
|
2 | (4) |
|
1.3 When to Use Linear Modeling |
|
|
6 | (1) |
|
|
7 | (8) |
|
|
15 | (22) |
|
|
15 | (1) |
|
2.2 Matrix Representation |
|
|
16 | (1) |
|
|
17 | (1) |
|
2.4 Least Squares Estimation |
|
|
18 | (1) |
|
2.5 Examples of Calculating β |
|
|
19 | (1) |
|
|
19 | (3) |
|
2.7 Computing Least Squares Estimates |
|
|
22 | (2) |
|
2.8 Gauss--Markov Theorem |
|
|
24 | (2) |
|
|
26 | (2) |
|
|
28 | (3) |
|
|
31 | (6) |
|
|
37 | (16) |
|
3.1 Hypothesis Tests to Compare Models |
|
|
37 | (2) |
|
|
39 | (5) |
|
|
44 | (1) |
|
|
45 | (2) |
|
3.5 Confidence Intervals for β |
|
|
47 | (1) |
|
3.6 Bootstrap Confidence Intervals |
|
|
48 | (5) |
|
|
53 | (8) |
|
4.1 Confidence Intervals for Predictions |
|
|
53 | (1) |
|
|
54 | (2) |
|
|
56 | (2) |
|
4.4 What Can Go Wrong with Predictions? |
|
|
58 | (3) |
|
|
61 | (14) |
|
|
61 | (2) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (2) |
|
|
67 | (3) |
|
|
70 | (1) |
|
5.7 Qualitative Support for Causation |
|
|
71 | (4) |
|
|
75 | (26) |
|
6.1 Checking Error Assumptions |
|
|
75 | (10) |
|
|
75 | (5) |
|
|
80 | (3) |
|
|
83 | (2) |
|
6.2 Finding Unusual Observations |
|
|
85 | (8) |
|
|
85 | (2) |
|
|
87 | (4) |
|
6.2.3 Influential Observations |
|
|
91 | (2) |
|
6.3 Checking the Structure of the Model |
|
|
93 | (3) |
|
|
96 | (5) |
|
7 Problems with the Predictors |
|
|
101 | (14) |
|
7.1 Errors in the Predictors |
|
|
101 | (4) |
|
|
105 | (3) |
|
|
108 | (7) |
|
8 Problems with the Error |
|
|
115 | (20) |
|
8.1 Generalized Least Squares |
|
|
115 | (2) |
|
8.2 Weighted Least Squares |
|
|
117 | (4) |
|
8.3 Testing for Lack of Fit |
|
|
121 | (4) |
|
|
125 | (10) |
|
|
125 | (3) |
|
8.4.2 High Breakdown Estimators |
|
|
128 | (7) |
|
|
135 | (20) |
|
9.1 Transforming the Response |
|
|
135 | (5) |
|
9.2 Transforming the Predictors |
|
|
140 | (1) |
|
9.3 Broken Stick Regression |
|
|
140 | (2) |
|
|
142 | (6) |
|
|
148 | (2) |
|
|
150 | (2) |
|
|
152 | (3) |
|
|
155 | (18) |
|
|
156 | (1) |
|
10.2 Hypothesis Testing-Based Procedures |
|
|
156 | (4) |
|
10.3 Criterion-Based Procedures |
|
|
160 | (3) |
|
|
163 | (4) |
|
|
167 | (2) |
|
|
169 | (4) |
|
|
173 | (24) |
|
11.1 Principal Components |
|
|
173 | (11) |
|
11.2 Partial Least Squares |
|
|
184 | (3) |
|
|
187 | (4) |
|
|
191 | (3) |
|
|
194 | (3) |
|
12 Insurance Redlining --- A Complete Example |
|
|
197 | (14) |
|
12.1 Ecological Correlation |
|
|
197 | (2) |
|
12.2 Initial Data Analysis |
|
|
199 | (3) |
|
12.3 Full Model and Diagnostics |
|
|
202 | (2) |
|
12.4 Sensitivity Analysis |
|
|
204 | (3) |
|
|
207 | (4) |
|
|
211 | (10) |
|
13.1 Types of Missing Data |
|
|
211 | (1) |
|
13.2 Representation and Detection of Missing Values |
|
|
212 | (1) |
|
|
213 | (2) |
|
|
215 | (2) |
|
|
217 | (2) |
|
|
219 | (2) |
|
14 Categorical Predictors |
|
|
221 | (20) |
|
|
221 | (4) |
|
14.2 Factors and Quantitative Predictors |
|
|
225 | (3) |
|
14.3 Interpretation with Interaction Terms |
|
|
228 | (2) |
|
14.4 Factors with More Than Two Levels |
|
|
230 | (5) |
|
14.5 Alternative Codings of Qualitative Predictors |
|
|
235 | (6) |
|
|
241 | (12) |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
245 | (1) |
|
15.4 Pairwise Comparisons |
|
|
246 | (2) |
|
15.5 False Discovery Rate |
|
|
248 | (5) |
|
16 Models with Several Factors |
|
|
253 | (20) |
|
16.1 Two Factors with No Replication |
|
|
253 | (4) |
|
16.2 Two Factors with Replication |
|
|
257 | (5) |
|
16.3 Two Factors with an Interaction |
|
|
262 | (4) |
|
16.4 Larger Factorial Experiments |
|
|
266 | (7) |
|
17 Experiments with Blocks |
|
|
273 | (16) |
|
17.1 Randomized Block Design |
|
|
274 | (4) |
|
|
278 | (4) |
|
17.3 Balanced Incomplete Block Design |
|
|
282 | (7) |
A About Python |
|
289 | (2) |
Bibliography |
|
291 | (4) |
Index |
|
295 | |