Muutke küpsiste eelistusi

E-raamat: Linear And Nonlinear Wave Propagation

(New York Univ, Usa)
  • Formaat: 208 pages
  • Ilmumisaeg: 16-Apr-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811231650
  • Formaat - PDF+DRM
  • Hind: 70,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 208 pages
  • Ilmumisaeg: 16-Apr-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811231650

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Waves are essential phenomena in most scientific and engineering disciplines, such as electromagnetism and optics, and different mechanics including fluid, solid, structural, quantum, etc. They appear in linear and nonlinear systems. Some can be observed directly and others are not. The features of the waves are usually described by solutions to either linear or nonlinear partial differential equations, which are fundamental to the students and researchers. Generic equations, describing wave and pulse propagation in linear and nonlinear systems, are introduced and analyzed as initial/boundary value problems. These systems cover the general properties of non-dispersive and dispersive, uniform and non-uniform, with/without dissipations. Methods of analyses are introduced and illustrated with analytical solutions. Wave-wave and wave-particle interactions ascribed to the nonlinearity of media (such as plasma) are discussed in the final chapter. This interdisciplinary textbook is essential reading for anyone in above mentioned disciplines. It was prepared to provide students with an understanding of waves and methods of solving wave propagation problems. The presentation is self-contained and should be read without difficulty by those who have adequate preparation in classic mechanics. The selection of topics and the focus given to each provide essential materials for a lecturer to cover the bases in a linear/nonlinear wave course.

Preface vii
List of Figures
xv
Chapter 1 Wave Phenomena In Linear Systems
1(22)
1.1 Wave propagation in uniform medium
2(3)
1.2 Dispersive dielectrics
5(4)
1.3 Modes in linear systems (superposition applicable)
9(9)
1.3.1 Analytical approaches
12(3)
1.3.2 Numerical display
15(3)
1.4 Transfer function and impulse response function of the system
18(2)
1.4.1 Impulse response for time harmonic pulses
18(1)
1.4.2 Impulse response for ultra-short pulses
19(1)
Problems
20(3)
Chapter 2 Wave Propagation In Linear Inhomogeneous Media
23(20)
2.1 WKB solution
23(2)
2.2 Solution of the wave equation near a turning point
25(2)
2.3 Ray tracing in inhomogeneous media
27(1)
2.4 General formulation of ray trajectory equations
28(6)
2.5 Method of characteristics
34(3)
2.6 Mode method for time harmonic systems
37(4)
Problems
41(2)
Chapter 3 Waves Traversing A Temporal Discontinuity Interface Between Two Media
43(19)
3.1 Space-time duality of wave phenomena at a discontinuity interface between media
43(1)
3.2 Wave propagation in suddenly created unmagnetized plasma
44(4)
3.3 Wave propagation in suddenly created magneto plasma
48(11)
3.3.1 Branches of modes
48(2)
3.3.2 Continuity conditions at temporal discontinuity interface
50(5)
3.3.3 Momentum and energy conservation
55(4)
Problems
59(3)
Chapter 4 Slow Varying Systems (One Dimensional Lumped Systems)
62(27)
4.1 Introduction
62(2)
4.2 Initial value problem for a one-dimensional lumped system-Duffing equation
64(3)
4.3 Source excited oscillatory problem (forced Duffing oscillator)
67(5)
4.4 Oscillatory problem with friction (one dimensional lumped systems with damping)
72(8)
4.5 Forced bistate oscillator with friction (one dimensional nonlinear systems with three equilibria --- from deterministic to chaotic)
80(5)
4.6 The Van der Pol equation
85(2)
Problems
87(2)
Chapter 5 Lagrangian And Hamiltonian Method In One Dimension
89(17)
5.1 Equations of motion
89(2)
5.2 Average Lagrangian and Hamiltonian method for approximate response
91(3)
5.2.1 Examples
92(2)
5.3 Averaging for strongly nonlinear variable parameter systems
94(3)
5.4 Analytical approach for strongly nonlinear variable parameter lumped systems
97(7)
Problems
104(2)
Chapter 6 Nonlinear Waves
106(16)
6.1 Introduction
106(2)
6.2 "Mode" types in nonlinear systems (Riemann invariants)
108(4)
6.3 Equations for self-consistent description of nonlinear waves in plasma
112(1)
6.4 Formulation of nonlinear wave equations
113(8)
6.4.1 Nonlinear Schrodinger equation for electromagnetic wave
113(2)
6.4.2 Nonlinear Schrodinger equation for electron plasma (Langmuir) wave
115(2)
6.4.3 Korteweg-de Vries (KdV) equation for ion acoustic wave
117(2)
6.4.4 Burgers equation for dissipated ion acoustic wave
119(2)
Problems
121(1)
Chapter 7 Analytical Solutions Of Nonlinear Wave Equations
122(25)
7.1 Nonlinear Schrodinger equation (NLSE)
122(7)
7.1.1 Characteristic features of solutions
122(1)
A Conservation laws
123(1)
B Scaling symmetry
123(1)
C Galilean invariance
124(1)
D Virial theorem (Variance identity)
124(1)
7.1.2 Analyses
124(1)
A Periodic solutions
125(2)
B Solitary solution
127(2)
7.2 Korteweg-de Vries (K-dV) equation
129(14)
7.2.1 Conservation laws
129(1)
7.2.2 Potential and modified Korteweg-de Vries (p & mK-dV) equations
130(1)
7.2.3 Propagating modes
130(1)
A Periodic Solution
131(2)
B Soliton trapped in self-induced potential well
133(1)
7.2.4 Soliton solution with Backlund transform
134(1)
7.2.5 Transition from nonstationary to stationary
135(1)
A Inverse scattering transform (1ST)
135(3)
B Example, a two-soliton solution
138(2)
C Asymptotic form of the two-soliton solution
140(2)
D Pulse behavior in the transition region
142(1)
7.3 Burgers equation
143(3)
7.3.1 Analytical solution via the Cole-Hopf transformation
143(2)
7.3.2 Propagating modes
145(1)
Problems
146(1)
Chapter 8 Wave-Wave And Wave-Particle Interactions
147(17)
8.1 Vlasov-Poisson system
148(1)
8.2 Velocity diffusion
149(1)
8.3 Mode coupling
149(5)
8.4 Quasi-linear diffusion and equivalent temperature
154(3)
8.5 Renormalization of quasilinear diffusion equation-resonance broadening
157(4)
8.6 Collapse of nonlinear waves
161(2)
Problems
163(1)
Answers to Problems 164(17)
Bibliography 181(4)
Index 185