Muutke küpsiste eelistusi

E-raamat: Linear Regression Analysis

(University of Auckland, New Zealand), (University of Auckland, New Zealand)
  • Formaat - PDF+DRM
  • Hind: 193,83 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Updating and expanding the original text, this new edition covers the current theory and applications of linear regression analysis. It provides a survey of the research literature and outlines the solutions to approximately 200 sample problems. Particular attention is given to diagnostics, model fitting, model selection, and prediction. Seber and Lee have each taught statistics at the University of Auckland. Annotation (c) Book News, Inc., Portland, OR (booknews.com)

Concise, mathematically clear, and comprehensive treatment of the subject.
* Expanded coverage of diagnostics and methods of model fitting.
* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.
* More than 200 problems throughout the book plus outline solutions for the exercises.
* This revision has been extensively class-tested.

Arvustused

"With excellent motivating and presenting style, this book is suitable for a beginning graduate level regression course." (Journal of Statistical Computation and Simulation, July 2005) "...revises and expands the standard text, providing extensive coverage of state-of-the-art theory..." (Zentralblatt Math, Vol. 1029, 2004)

"...largely rewritten...very useful for self-study...an excellent choice for a course in linear models and researchers who are interested in recent literature in the fields..." (Technometrics, Vol. 45, No. 4, November 2003)

...rewritten to reflect current thinking, such as the major advances in computing during the past 25 years. (Quarterly of Applied Mathematics, Vol. LXI, No. 3, September 2003)

Preface.
Vectors of Random Variables.
Multivariate Normal Distribution.
Linear Regression: Estimation and Distribution Theory.
Hypothesis Testing.
Confidence Intervals and Regions.
Straight-Line Regression.
Polynomial Regression.
Analysis of Variance.
Departures from Underlying Assumptions.
Departures from Assumptions: Diagnosis and Remedies.
Computational Algorithms for Fitting a Regression.
Prediction and Model Selection.
Appendix A. Some Matrix Algebra.
Appendix B. Orthogonal Projections.
Appendix C. Tables.
Outline Solutions to Selected Exercises.
References.
Index.


GEORGE A. F. SEBER, PhD, is Professor Emeritus of Statistics at the University of Auckland, New Zealand. ALAN J. LEE, PhD, is the Chairman of the Department of Statistics at the University of Auckland.