Muutke küpsiste eelistusi

E-raamat: Liquid Cell Electron Microscopy

Edited by (IBM T. J. Watson Research Center, New York)
  • Formaat - EPUB+DRM
  • Hind: 216,12 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Liquid cell electron microscopy allows us to apply the powerful imaging and analysis capabilities of the electron microscope to liquid samples, visualizing structures and processes in biology, materials science and physics that are traditionally inaccessible to electron microscopy. This book describes the study of liquids in transmission and scanning electron microscopes, covering techniques, applications and future opportunities. The first eight chapters explain closed and open cell electron microscopy, which are the two general strategies that have been developed for examining liquids. These chapters discuss experimental design, image resolution, and electron beam effects. The next ten chapters describe the impact of liquid cell electron microscopy infields including electrochemistry, corrosion and batteries; nanocrystal growth, electron beam-induced processing, fluid physics, biomineralization, and biomaterials including whole cells. The final five chapters look ahead to technical advances that improve image resolution and enable analytical microscopy and holography of liquid samples. The overall aim of the book is to provide guidance in studying liquid samples with electron microscopy and to encourage its use in even more diverse fields of science"--

Muu info

The first book on the topic, covering the fundamental theory, applications, and future developments of liquid cell electron microscopy.
List of Contributors
xii
Preface and Acknowledgements xvii
Part I Technique
1(188)
1 Past, Present, and Future Electron Microscopy of Liquid Specimens
3(32)
Niels de Jonge
Frances M. Ross
1.1 Introduction
3(1)
1.2 The Rapidly Developing Liquid Cell Microscopy Technique
4(8)
1.3 Liquid Cell Microscopy for Materials Science, Biology, and Beyond
12(7)
1.4 Which Type of Microscopy Should I Use?
19(2)
1.5 Future Prospects
21(4)
1.6 Conclusions
25(10)
References
25(10)
2 Encapsulated Liquid Cells for Transmission Electron Microscopy
35(21)
Eric Jensen
Kristian Mølhave
2.1 Introduction
35(2)
2.2 Microfabricated Chip Designs
37(8)
2.3 Other Encapsulation Methods
45(1)
2.4 What Happens When the Liquid Cell Fails?
46(1)
2.5 Membrane Bulging: Mitigation and Measurement
47(2)
2.6 Stimuli and Correlative Measurements: Biasing, Heating, Flow, and Spectroscopy
49(2)
2.7 Conclusions and Outlook
51(5)
References
52(4)
3 Imaging Liquid Processes Using Open Cells in the TEM, SEM, and Beyond
56(22)
Chongmin Wang
3.1 Introduction
56(1)
3.2 Fundamental Concepts for Open Cell Experiments in S/TEM
57(2)
3.3 Open Cells for Imaging Droplets, Crystal Growth, Particle Motion and Surface Passivation
59(4)
3.4 Open Cells for In Situ Battery Reactions
63(9)
3.5 Extension of the Open Cell Concept to Other Imaging and Spectroscopic Techniques
72(1)
3.6 Perspective
73(5)
Acknowledgements
74(1)
References
75(3)
4 Membrane-Based Environmental Cells for SEM in Liquids
78(28)
Andrei Kolmakov
4.1 Introduction
78(2)
4.2 Basics of SEM through Membranes
80(5)
4.3 Examples of Environmental Cell Designs and Liquid SEM Applications
85(7)
4.4 Novel Two-Dimensional Materials as Electron-Transparent Membranes for Liquid SEM Cells
92(7)
4.5 Outlook
99(7)
Acknowledgements
101(1)
References
101(5)
5 Observations in Liquids Using an Inverted SEM
106(21)
Chikara Sato
Mitsuo Suga
5.1 Introduction
106(1)
5.2 Instrument Design and Sample Geometry of the ASEM
106(3)
5.3 Applications of ASEM
109(7)
5.4 Correlative Microscopy (CLEM)
116(4)
5.5 Other SEM Techniques for Examining Liquids at Atmospheric Pressure
120(3)
5.6 Conclusions
123(4)
Acknowledgements
124(1)
References
124(3)
6 Temperature Control in Liquid Cells for TEM
127(13)
Shen J. Dillon
Xin Chen
6.1 Introduction: Controlled Temperature Experiments
127(4)
6.2 Electron Beam-Induced Heating
131(1)
6.3 Temperature Measurements
132(1)
6.4 Applications
133(4)
6.5 Outlook
137(3)
References
138(2)
7 Electron Beam Effects in Liquid Cell TEM and STEM
140(24)
Nicholas M. Schneider
7.1 Introduction
140(1)
7.2 Electron Energy Loss in Liquids
140(4)
7.3 Electron Beam Heating
144(3)
7.4 Introduction to the Radiation Chemistry of Water
147(3)
7.5 Homogeneous Irradiation
150(2)
7.6 Finite Beam Irradiation with Diffusion
152(2)
7.7 Practical Effects of Radiolysis
154(5)
7.8 Radiolysis beyond Neat Water
159(1)
7.9 Conclusions and Outlook
160(4)
References
161(3)
8 Resolution in Liquid Cell Experiments
164(25)
Niels de Jonge
Nigel D. Browning
James E. Evans
See Wee Chee
Frances M. Ross
8.1 Introduction
164(1)
8.2 Spatial Resolution in Liquid Cell TEM
165(9)
8.3 Spatial Resolution in Liquid Cell STEM
174(3)
8.4 Temporal Resolution in TEM and STEM
177(2)
8.5 Image Simulations in Liquid Cell TEM and STEM
179(1)
8.6 Some Practicalities and Pitfalls of Liquid Cell TEM and STEM
179(6)
8.7 Summary and Outlook
185(4)
Acknowledgements
185(1)
References
186(3)
Part II Applications
189(202)
9 Nanostructure Growth, Interactions, and Assembly in the Liquid Phase
191(19)
Hong-Gang Liao
Kai-Yang Niu
Haimei Zheng
9.1 Introduction
191(1)
9.2 Formation of Nanoparticles in TEM
192(2)
9.3 Single Particle Growth Trajectories
194(3)
9.4 Important Factors in Nanoparticle Growth
197(3)
9.5 Growth of Materials Architectures
200(1)
9.6 Nanoparticle Diffusion and Assembly
201(4)
9.7 Etching and Corrosion
205(1)
9.8 Conclusions and Outlook
205(5)
Acknowledgements
206(1)
References
206(4)
10 Quantifying Electrochemical Processes Using Liquid Cell TEM
210(27)
Frances M. Ross
10.1 Introduction
210(1)
10.2 Design of Liquid Cells for Quantitative Electrochemical Experiments
211(8)
10.3 Electrochemical Nucleation and Growth in Plan View
219(5)
10.4 Growth Front Propagation via Lateral Measurements
224(4)
10.5 Experimental Challenges
228(4)
10.6 Outlook
232(5)
References
233(4)
11 Application of Electrochemical Liquid Cells for Electrical Energy Storage and Conversion Studies
237(21)
Raymond R. Unocic
Karren L. More
11.1 Introduction
237(1)
11.2 Electrical Energy Storage and Conversion Systems: Challenges and Opportunities
237(1)
11.3 Closed Cell Electrochemical-S/TEM for Energy Storage and Conversion Studies
238(4)
11.4 Electroanalytical Measurement Techniques
242(2)
11.5 Application of Electrochemical-S/TEM for Battery Research
244(8)
11.6 Application of ec-S/TEM for Fuel Cell Research
252(2)
11.7 Summary
254(4)
Acknowledgements
254(1)
References
255(3)
12 Applications of Liquid Cell TEM in Corrosion Science
258(18)
See Wee Chee
M. Grace Burke
12.1 Introduction
258(1)
12.2 Studying Corrosion in Aqueous Environments
259(2)
12.3 Studies of Corrosion using Liquid Cell TEM
261(5)
12.4 Considerations Pertaining to Studying Corrosion with Liquid Cell TEM
266(4)
12.5 Microfluidic Cell Design for Electrochemical Corrosion Experiments
270(1)
12.6 Outlook
271(5)
Acknowledgements
272(1)
References and Notes
272(4)
13 Nanoscale Water Imaged by In Situ TEM
276(15)
Utkur Mirsaidov
Paul Matsudaira
13.1 Introduction
276(1)
13.2 Interfacial Fluids
277(3)
13.3 Nanodroplet Condensation
280(2)
13.4 Fluids in Nanochannels
282(3)
13.5 Voids and Nanobubbles in Liquid Films
285(1)
13.6 Outlook
286(5)
References
287(4)
14 Nanoscale Deposition and Etching of Materials Using Focused Electron Beams and Liquid Reactants
291(25)
Eugenii U. Donev
Matthew Bresin
J. Todd Hastings
14.1 Overview of Gas-Phase Focused Electron Beam-Induced Processing (FEBIP)
291(2)
14.2 Methods for LP-FEBIP
293(6)
14.3 Survey of LP-FEBID of Transition Metals
299(4)
14.4 Multi-element LP-FEBID
303(3)
14.5 Liquid-Phase Focused Electron Beam-Induced Etching (LP-FEBIE)
306(3)
14.6 Mechanisms for LP-FEBIP
309(1)
14.7 Outlook
310(6)
Acknowledgements
310(1)
References
310(6)
15 Liquid Cell TEM for Studying Environmental and Biological Mineral Systems
316(18)
Michael H. Nielsen
James J. De Yoreo
15.1 Introduction
316(1)
15.2 Mechanisms of Mineral Formation
317(2)
15.3 Liquid Holder Design
319(2)
15.4 Calcium Carbonate Formation Pathways
321(3)
15.5 Nucleation within an Organic Matrix
324(2)
15.6 Particle-Based Crystallization
326(2)
15.7 Conclusions and Future Applications
328(6)
Acknowledgements
330(1)
References
330(4)
16 Liquid STEM for Studying Biological Function in Whole Cells
334(22)
Diana B. Peckys
Niels de Jonge
16.1 Introduction
334(1)
16.2 Liquid STEM Technology
334(5)
16.3 Studying Membrane Proteins in Whole Cells in Liquid
339(5)
16.4 Live Cell Liquid STEM
344(3)
16.5 Gold Nanoparticle Uptake Studied in Whole Cells
347(1)
16.6 Comparison with Cryo-TEM
348(2)
16.7 Conclusions and Outlook
350(6)
Acknowledgements
351(1)
References
351(5)
17 Visualizing Macromolecules in Liquid at the Nanoscale
356(15)
Andrew C. Demmert
Madeline J. Dukes
Elliot Pohlmann
Kaya Patel
A. Cameron Varano
Zhi Sheng
Sarah M. McDonald
Michael Spillman
Utkur Mirsaidov
Paul Matsudaira
Deborah F. Kelly
17.1 Introduction: The Critical Need for Imaging Dynamic Events in Life Sciences
356(1)
17.2 Recent Technical Advances: How Liquid Cell TEM Can Address This Critical Need
357(1)
17.3 The Affinity Capture Technique to Tether Unlabeled Biological Complexes onto SixNy
357(4)
17.4 Correlative Nanoscale Imaging: What Information Can We Learn from Combining Liquid Cell TEM and Cryo-EM?
361(7)
17.5 New Directions: Use of Direct Electron CMOS Detectors to Acquire "Molecular Movies" of Fundamental Processes
368(3)
Acknowledgements
369(1)
References
369(2)
18 Application of Liquid Cell Microscopy to Study Function of Muscle Proteins
371(20)
Haruo Sugi
Shigeru Chaen
Tsuyoshi Akimoto
Masaru Tanokura
Takuya Miyakawa
Hiroki Minoda
18.1 Introduction: Our Motivation for Liquid Cell Microscopy of Muscle Contraction
371(4)
18.2 Experimental Methods for Recording Myosin Head Movement
375(6)
18.3 ATP-Induced Movement of Individual Myosin Heads
381(7)
18.4 Conclusions and Outlook
388(3)
Acknowledgements
389(1)
References
389(2)
Part III Prospects
391(110)
19 High Resolution Imaging in the Graphene Liquid Cell
393(15)
Jungwon Park
Vivekananda P. Adiga
Alex Zettl
A. Paul Alivisatos
19.1 Introduction to Graphene Liquid Cells: Advantages, Opportunities, and Fabrication Methods
393(3)
19.2 Studying Growth Mechanisms in Atomic Detail by GLC-TEM
396(4)
19.3 Applications of GLC-TEM in Biological Studies
400(4)
19.4 Future Directions
404(4)
References
406(2)
20 Analytical Electron Microscopy during In Situ Liquid Cell Studies
408(26)
Megan E. Holtz
David A. Muller
Nestor J. Zaluzec
20.1 Introduction
408(5)
20.2 Electron Energy Loss Spectroscopy
413(7)
20.3 X-ray Energy Dispersive Spectroscopy
420(11)
20.4 Summary
431(3)
Acknowledgements
432(1)
References
432(2)
21 Spherical and Chromatic Aberration Correction for Atomic-Resolution Liquid Cell Electron Microscopy
434(22)
Ratal E. Dunin-Borkowski
Lothar Houben
21.1 Introduction
434(1)
21.2 Spherical Aberration Correction in the TEM
435(9)
21.3 Spherical Aberration Correction in STEM
444(2)
21.4 Chromatic Aberration Correction in the TEM
446(6)
21.5 Conclusions
452(4)
Acknowledgements
453(1)
References
453(3)
22 The Potential for Imaging Dynamic Processes in Liquids with High Temporal Resolution
456(20)
Nigel D. Browning
James E. Evans
22.1 Introduction
456(1)
22.2 Why Do We Need Better Temporal Resolution?
457(3)
22.3 Hardware/Software Developments for Fast Temporal Resolution
460(6)
22.4 Materials and Biological Examples
466(5)
22.5 Conclusions
471(5)
Acknowledgements
471(1)
References
472(4)
23 Future Prospects for Biomolecular, Biomimetic, and Biomaterials Research Enabled by New Liquid Cell Electron Microscopy Techniques
476(25)
Taylor Woehl
Tanya Prozorov
23.1 Introduction
476(1)
23.2 Visualizing Protein Structure in Liquid Water at High Resolution
476(3)
23.3 Elucidating Fundamental Biomineralization Mechanisms via In Vivo Imaging
479(4)
23.4 Visualizing Electromagnetic Fields and Nanoparticle Interactions in Biomolecular Systems
483(5)
23.5 Biomimetics
488(3)
23.6 Mesocrystal Formation
491(4)
23.7 Conclusions
495(6)
Acknowledgements
495(1)
References
495(6)
Index 501
Frances M. Ross is based at IBM's T. J. Watson Research Center, where she has built a program around a microscope with deposition and focused ion beam capabilities, and developed closed liquid cell microscopy to image electrochemical processes. Previously she worked at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, and has also been a Visiting Scientist at Lunds Universitet, Sweden and an Adjunct Professor at Arizona State University. She received the UK Institute of Physics Boys Medal, the MRS Outstanding Young Investigator Award and the MSA Burton Medal, holds an Honorary Doctorate from Lunds Universitet, and is a Fellow of the American Physical Society, the American Association for the Advancement of Science, the Materials Research Society, the Microscopy Society of America and the American Vacuum Society.