Muutke küpsiste eelistusi

E-raamat: Liquid Crystals

(The Pennsylvania State University)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 148,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Liquid crystals are a phase of matter whose order is intermediate between that of a liquid and that of a crystal. The molecules are typically rod-shaped organic moieties about 25 Angstroms in length and their ordering is a function of temperature. The nematic phase, for example, is characterized by the orientational order of the constituent molecules. The molecular orientation (and hence the material's optical properties) can be controlled with applied electric fields. Liquid crystal science and applications permeate many segments of society from large industrial displays to individual homes and offices. Non-display applications in nonlinear optics, optical communication and data/signal/image are receiving increasing attention and are growing at a rapidpace"--

The latest edition of the leading resource on the properties and applications of liquid crystals

In the newly revised Third Edition of Liquid Crystals, Professor Iam Choon Khoo delivers a comprehensive treatment of the fundamentals and applied aspects of optical physics, light scattering, electro-optics, and non-linear optics of liquid crystals. The book's opening chapters include coverage of the foundational physics and optical properties of liquid crystals and lead to more advanced content on the display, photonics and nonlinear optics applications of liquid crystals.

New topics, including photonic crystals, metamaterials, ultrafast nonlinear optics, and fabrication methods for massive cholesteric and blue phase liquid crystals are discussed at length. Analytical methods and experimental observations of nonlinear light propagation through liquid crystalline and anisotropic materials and devices are also discussed.

Liquid Crystals offers an insightful and unique treatment of the nonlinear optics of liquid crystals. New and expanded sections round out this new edition and add to the most up-to-date resource on this topic available today. The book also includes:

  • A thorough introduction to liquid crystals, including their molecular structures, chemical compositions, order parameter, phase transition, and free energies
  • Practical discussions of nematic, cholesteric, smectic, and ferroelectric liquid crystals, and explorations of linear and nonlinear light scattering in these phases.
  • A detailed quantum mechanical treatment of the linear and nonlinear electronic optical response of liquid crystal molecules to optical fields.
  • A self-contained discussion of the fundamentals of nonlinear optics/photonics and comprehensive review of all liquid crystalline materials-based nonlinear optical processes and applications.

The latest edition of Liquid Crystals is an indispensable resource for graduate students, professors, research scientists and engineers in industrial or government laboratories. It's also an ideal reference for anyone seeking a one-stop textbook with complete coverage of the optical, electro-optical, and non-linear optical properties and processes of liquid crystals.

Preface xiii
Chapter 1 Introduction to Liquid Crystals
1(28)
1.1 Molecular Structures and Chemical Compositions
1(2)
1.2 Optical Properties
3(3)
1.2.1 Electronic Optical Transitions and UV Absorption
3(1)
1.2.2 Visible and Infrared Absorption; Terahertz, Microwave
4(2)
1.3 Lyotropic, Polymeric, and Thermotropic Liquid Crystals
6(5)
1.3.1 Lyotropic Liquid Crystals
6(1)
1.3.2 Polymeric Liquid Crystals
7(1)
1.3.3 Thermotropic Liquid Crystals: Smectic, Nematic, Cholesteric, and Blue-phase Liquid Crystals
8(3)
1.3.4 Functionalized and Discotic Liquid Crystals
11(1)
1.4 Mixtures, Polymer-dispersed, and Dye-doped Liquid Crystals
11(5)
1.4.1 Mixtures
12(2)
1.4.2 Dye-doped Liquid Crystals
14(1)
1.4.3 Polymer-dispersed and Polymer-stabilized Liquid Crystals
14(2)
1.5 Liquid Crystal Cells Fabrication
16(13)
1.5.1 Nematic LC Cells Assembly
16(2)
1.5.2 Cholesteric Liquid Crystal Cell Assembly
18(2)
1.5.3 Blue-phase Liquid Crystal Cell Assembly
20(2)
1.5.4 Photosensitive and Tunable Optical Waveguide, Photonic Crystals, and Metamaterial Nanostructures
22(2)
1.5.5 Isotropic Liquid Crystal Cored Fiber Array
24(1)
References
25(4)
Chapter 2 Order Parameter, Phase Transition, and Free Energies
29(15)
2.1 Basic Concepts
29(4)
2.1.1 Introduction
29(1)
2.1.2 Scalar and Tensor Order Parameters
30(2)
2.1.3 Long-and Short-range Order
32(1)
2.2 Molecular Interactions and Phase Transitions
33(1)
2.3 Molecular Theories and Results for the Liquid Crystalline Phase
34(5)
2.3.1 Maier-Saupe Theory: Order Parameter Near Tc
34(2)
2.3.2 Nonequilibrium and Dynamical Dependence of the Order Parameter
36(3)
2.4 Isotropic Phase of Liquid Crystals
39(5)
2.4.1 Free Energy and Phase Transition
40(1)
2.4.2 Free Energy in the Presence of an Applied Field
41(2)
References
43(1)
Chapter 3 Nematic Liquid Crystals
44(29)
3.1 Introduction
44(1)
3.2 Elastic Continuum Theory
44(5)
3.2.1 The Vector Field: Director Axis
44(2)
3.2.2 Elastic Constants, Free Energies, and Molecular Fields
46(3)
3.3 Dielectric Constants and Refractive Indices
49(4)
3.3.1 DC and Low-frequency Dielectric Permittivity, Conductivities, and Magnetic Susceptibility
49(3)
3.3.2 Free Energy and Torques by Electric and Magnetic Fields
52(1)
3.4 Optical Dielectric Constants and Refractive Indices
53(7)
3.4.1 Linear Susceptibility and Local Field Effect
53(3)
3.4.2 Equilibrium Temperature and Order Parameter Dependences of Refractive Indices
56(4)
3.5 Flows and Hydrodynamics
60(7)
3.5.1 Hydrodynamics of Ordinary Isotropic Fluids
61(3)
3.5.2 General Stress Tensor for Nematic Liquid Crystals
64(1)
3.5.3 Flows with Fixed Director Axis Orientation
65(1)
3.5.4 Flows with Director Axis Reorientation
66(1)
3.6 Field-induced Director Axis Reorientation Effects
67(6)
3.6.1 Field-induced Reorientation Without Flow Coupling: Freedericksz Transition
68(2)
3.6.2 Reorientation with Flow Coupling
70(2)
References
72(1)
Chapter 4 Cholesteric, Smectic, and Ferroelectric Liquid Crystals
73(42)
4.1 Cholesteric Liquid Crystals
73(6)
4.1.1 Free Energies
73(2)
4.1.2 Field-induced Effects and Dynamics
75(3)
4.1.3 Twist and Conic Mode Relaxation Times
78(1)
4.2 Optical Properties of Cholesterics
79(18)
4.2.1 Bragg Regime (Optical Wavelength ~ Pitch)
79(1)
4.2.2 Reflection and Transmission of Polarized Light: Normal Incidence
79(5)
4.2.3 Cholesteric Liquid Crystal as a One-dimensional Photonic Crystal, Photonic Bandgap, and Dispersion
84(5)
4.2.4 Cholesteric Liquid Crystals with Magneto-optic Activity: Negative Index of Refraction
89(1)
4.2.5 Polarization Rotation and Switching by High Period Number CLC - Adiabatic Rotation and Circular Bragg Resonance
90(7)
4.3 Cholesteric Blue Phase Liquid Crystals
97(3)
4.3.1 Free Energies and Equation of Motion under an Applied Field
97(1)
4.3.2 Field-induced Lattice Distortion and New Crystalline Structures
98(1)
4.3.3 Polymer-stabilization and Electro-optical Properties of Non-cubic BPLC
99(1)
4.4 Smectic and Ferroelectric Liquid Crystals: A Brief Survey
100(15)
4.4.1 Smectic-A Liquid Crystals
101(3)
4.4.2 Smectic-C Liquid Crystals
104(2)
4.4.3 Smectic-C* and Ferroelectric Liquid Crystals
106(5)
4.4.4 Smectic-C* - Smectic-A Phase Transition
111(2)
References
113(2)
Chapter 5 Light Scattering
115(27)
5.1 Introduction
115(1)
5.2 Electromagnetic Formalism of Light Scattering in Liquid Crystals
115(3)
5.3 Scattering From Director Axis Fluctuations in Nematic Liquid Crystals
118(4)
5.4 Light Scattering in the Isotropic Phase of Liquid Crystals
122(3)
5.5 Temperature, Wavelength, and Cell Geometry Effects on Scattering
125(2)
5.6 Spectrum of Light and Orientation Fluctuation Dynamics
127(2)
5.7 Raman Scatterings
129(4)
5.7.1 Introduction
129(1)
5.7.2 Quantum Theory of Spontaneous and Stimulated Raman Scattering: Scattering Cross-section
130(2)
5.7.3 Spontaneous Raman Scattering
132(1)
5.7.4 Stimulated Raman Scattering
132(1)
5.8 Brillouin and Rayleigh Scatterings
133(5)
5.8.1 Brillouin Scattering
135(2)
5.8.2 Rayleigh Scattering
137(1)
5.9 A Brief Introduction to Nonlinear Light Scattering
138(4)
References
140(2)
Chapter 6 Liquid Crystals Optics and Electro-optics
142(33)
6.1 Introduction
142(1)
6.2 Review of Electro-Optics of Anisotropic and Birefringent Crystals
143(6)
6.2.1 Anisotropic, Uniaxial and Biaxial Optical Crystals
143(2)
6.2.2 Index Ellipsoid in the Presence of an Electric Field-Electro-optics Effect
145(1)
6.2.3 Polarizers and Retardation Plate
146(2)
6.2.4 Basic Electro-optics Modulation
148(1)
6.3 Electro-Optics of Nematic Liquid Crystals
149(7)
6.3.1 Director Axis Reorientation in Homeotropic and Planar Cell; Dual Frequency Liquid Crystals
149(2)
6.3.2 Freedericksz Transition Revisited
151(3)
6.3.3 Field-induced Refractive Index Change and Phase Shift
154(2)
6.4 Nematic Liquid Crystal Switches for Display Application
156(3)
6.4.1 Liquid Crystal Switch - on Axis Consideration for Twist, Planar, and Homeotropic Aligned Cells
156(1)
6.4.2 Off-axis Transmission, Viewing Angle, and Birefringence Compensation
157(2)
6.4.3 Liquid Crystal Display Electronics
159(1)
6.5 Electro-Optical Effects in Other Phases of Liquid Crystals
159(4)
6.5.1 Surface Stabilized FLC
160(1)
6.5.2 Soft-mode FLCs
161(2)
6.6 Non-Display Applications of Liquid Crystals
163(12)
6.6.1 Liquid Crystal Spatial Light Modulator
164(1)
6.6.2 Tunable Photonic Crystals with Liquid Crystal Infiltrated Nanostructures
165(2)
6.6.3 Tunable Frequency Selective Structures, Metamaterial, and Metasurfaces
167(1)
6.6.4 Liquid Crystals for Molecular Sensing and Detection
168(2)
6.6.5 Beam Steering, Routing, and Tunable Micro-ring Resonator, and High-power Laser Optics
170(1)
References
171(4)
Chapter 7 Optical Propagation in Anisotropic Materials
175(28)
7.1 Electromagnetic Formalisms for Optical Propagation
175(10)
7.1.1 Maxwell Equations and Wave Equations in Anisotropic Media
176(1)
7.1.2 Complex Refractive Index - Real and Imaginary Components
177(1)
7.1.3 Negative Index Material
178(1)
7.1.4 Normal Modes, Power Flow and Propagation Vectors in a Lossless Isotropic Medium
179(2)
7.1.5 Normal Modes and Propagation Vectors in a Lossless Anisotropic Medium
181(4)
7.2 Polarized Light Propagation in Liquid Crystal Display Panel
185(8)
7.2.1 Pane Polarized Wave and Jones Vectors
185(4)
7.2.2 Jones Matrix Method
189(2)
7.2.3 Oblique Incidence - 4 × 4 Matrix Methods
191(2)
7.3 Extended Jones Matrix Method
193(3)
7.4 Finite-difference Time-domain technique
196(1)
7.5 Nonlinear Light Propagation in Liquid Crystals - a First Look
197(1)
7.6 Systems of Units
198(5)
References
200(3)
Chapter 8 Laser-induced Reorientation Nonlinear Optical Effects
203(38)
8.1 Introduction
203(1)
8.2 Laser-Induced Molecular Reorientations in the Isotropic Phase
204(8)
8.2.1 Individual Molecular Reorientations in Anisotropic Liquids
204(3)
8.2.2 Correlated Molecular Reorientation Dynamics
207(3)
8.2.3 Influence of Molecular Structure on Isotropic Phase Reorientation Nonlinearities
210(2)
8.3 Molecular Reorientations in the Nematic Phase
212(7)
8.3.1 Simplified Treatment of Optical Field-induced Director Axis Reorientation
213(2)
8.3.2 More Exact Treatment of Optical Field-induced Director Axis Reorientation
215(2)
8.3.3 Nonlocal Director Axis Reorientation and Nonlocal Optical Nonlinearity
217(2)
8.4 Nematic Phase Reorientation Dynamics
219(6)
8.4.1 Plane Wave Optical Field
219(3)
8.4.2 Sinusoidal Optical Intensity
222(2)
8.4.3 Polarization Grating with Uniform Optical Intensity
224(1)
8.5 Laser-Induced Director Axis Realignment in Dye-Doped Liquid Crystals
225(1)
8.5.1 Reorientation Caused by Inter-Molecular Torque
225(1)
8.5.2 Laser-induced Trans-Cis Isomerism in Dye-doped Liquid Crystals
226(1)
8.6 DC Field Aided Optically Induced Nonlinear Optical Effects in Liquid Crystals - Photorefractivity
226(8)
8.6.1 Orientation Photorefractivity - Bulk Effects
229(4)
8.6.2 Experimental Results and Surface Charge/Field Contribution
233(1)
8.7 Reorientation in Other Phases of Pristine (Undoped) Liquid Crystals
234(7)
8.7.1 Smectic Phase
234(1)
8.7.2 Cholesteric and Blue-phase Liquid Crystals
235(1)
References
236(5)
Chapter 9 Thermal, Density, Lattice Distortion Optical Nonlinearities in Nematic, Cholesteric, and Blue-phase Liquid Crystals
241(34)
9.1 Introduction
241(1)
9.2 Electrostriction and Flows in Non-Absorbing Liquid Crystals - a General Overview
242(3)
9.3 Laser-Induced Density and Temperature Modulations in Liquid Crystals
245(9)
9.3.1 Modulations by Sinusoidal Optical Intensity
247(3)
9.3.2 Refractive Index Changes: Temperature and Density Effects
250(4)
9.4 Optical Nonlinearities of Nematic Liquid Crystals
254(6)
9.4.1 Steady-State Thermal Nonlinearity of Nematic Liquid Crystals
256(1)
9.4.2 Short Laser Pulse-induced Thermal Index Change in Nematics and Near-T Effect
257(1)
9.4.3 Optical Nonlinearities of Isotropic Liquid Crystals
258(2)
9.5 Coupled Nonlinear Optical Effects in Nematic Liquid Crystals
260(6)
9.5.1 Thermal Orientation Coupling Effect
261(1)
9.5.2 Flow-reorientation Effect
262(4)
9.6 Nonlinear Optical Responses of Cholesteric Blue-Phase Liquid Crystals
266(9)
9.6.1 General Overview
266(2)
9.6.2 Non-electronics Optical Nonlinearities of BPLC
268(4)
References
272(3)
Chapter 10 Electronic Optical Nonlinearities
275(27)
10.1 Introduction to Quantum Mechanical Treatment of Molecules
275(3)
10.2 Density Matrix Formalism for Optical Induced Molecular Electronic Polarizabilities
278(4)
10.2.1 Field-induced Polarizations - First and Higher Orders
280(1)
10.2.2 Linear and Nonlinear Absorptions
280(2)
10.3 Linear and Nonlinear Electronic Susceptibilities
282(14)
10.3.1 Linear Optical Polarizabilities of a Molecule
282(4)
10.3.2 Complex Susceptibilities and Index of Refraction - Dispersion, Absorption, and Amplification of Light, Lasers
286(3)
10.3.3 Second-order Electronic Polarizabilities
289(1)
10.3.4 Third-order Electronic Polarizabilities
290(2)
10.3.5 Local Field Effects and Symmetry
292(1)
10.3.6 Symmetry Considerations
293(1)
10.3.7 Permanent Dipole and Molecular Ordering
294(1)
10.3.8 Quadrupole Contribution and Field-induced Symmetry Breaking
295(1)
10.3.9 Influence of Molecular Structures
295(1)
10.4 Intensity-Dependent Refractive Index Change and nonlinear Absorption
296(6)
10.4.1 Nonlinear Absorption
298(2)
References
300(2)
Chapter 11 Nonlinear Optics
302(46)
11.1 Introduction
302(6)
11.1.1 General Nonlinear Polarization and Susceptibility
302(2)
11.1.2 Convention and Symmetry
304(4)
11.2 Coupled Maxwell Wave Equations
308(2)
11.3 Nonlinear Optical Phenomena
310(18)
11.3.1 Stationary Degenerate Optical Wave Mixing
310(4)
11.3.2 Optical Phase Conjugation
314(2)
11.3.3 Transient and Nearly Degenerate Wave Mixing
316(4)
11.3.4 Nondegenerate Optical Wave Mixing; Harmonic Generations
320(3)
11.3.5 Stationary Self-phase Modulation and Self-action
323(5)
11.4 Stimulated Scatterings
328(14)
11.4.1 Stimulated Raman Scatterings
329(3)
11.4.2 Stimulated Brillouin Scatterings
332(4)
11.4.3 Stimulated Orientation Scattering in Liquid Crystals
336(5)
11.4.4 Stimulated Thermal Scattering
341(1)
11.5 Ultrafast Laser Pulse Self-Action Effects in Cholesteric Liquid Crystals
342(6)
11.5.1 Coupled Wave Equations for Forward and Backward Propagating Waves
342(2)
11.5.2 Ultrafast Pulse Modulations - Compression, Stretching, and Recompression with Cholesteric Liquid Crystals
344(1)
References
345(3)
Chapter 12 Nonlinear Optical Processes Observed in Liquid Crystals
348(42)
12.1 Self-Action Nonlinear Optical Processes
348(10)
12.1.1 Self-induced Spatial and Temporal Phase Shift
348(1)
12.1.2 Self-phase Modulation, Self-focusing, - defocusing of Continuous-Wave (CW) or Pulsed Laser
349(4)
12.1.3 Self-guiding, Spatial Soliton and Pattern Formation
353(2)
12.1.4 Pulse Modulations, Polarization Rotation of and Switching by Ultrafast (Picosecond-Femtoseconds) Laser
355(3)
12.2 Optical Wave Mixings
358(11)
12.2.1 Stimulated Orientational Scattering and Polarization Self-switching-Steady State
358(3)
12.2.2 Stimulated Orientational Scattering - Nonlinear Dynamics
361(2)
12.2.3 Optical Phase Conjugation with Orientation and Thermal Gratings
363(2)
12.2.4 Self-starting Optical Phase Conjugation
365(4)
12.3 Liquid Crystals for All-Optical Image Processing
369(5)
12.3.1 Liquid Crystals as All-optical Information Processing Materials
369(2)
12.3.2 All-optical Image Processing
371(1)
12.3.3 Intelligent Optical Processing
372(2)
12.4 Harmonic Generations and Sum-Frequency Spectroscopy
374(1)
12.5 Optical Switching
375(4)
12.6 Nonlinear Absorption and Optical Limiting of Lasers for Eye/Sensor Protection
379(11)
12.6.1 Introduction
379(2)
12.6.2 Nonlinear Fiber Array - An Intensity Dependent Spatial Frequency Filter
381(2)
12.6.3 Optical Limiting Action of Fiber Array Containing RSA Materials
383(4)
12.6.4 Optical Limiting Action of Fiber Array Containing TPA Materials
387(3)
References 390(8)
Index 398
IAM-CHOON KHOO, PhD, is the William E. Leonhard Professor of Electrical Engineering at Pennsylvania State University, USA. He is a Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE), and a Fellow of the Optical Society of America, UK Institute of Physics and The Electromagnetic Academy.