Muutke küpsiste eelistusi

E-raamat: Load-pull Method of RF and Microwave Power Amplifier Design

  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jun-2020
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119078067
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 134,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jun-2020
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119078067
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Using the load-pull method for RF and microwave power amplifier design

This new book on RF power amplifier design, by industry expert Dr. John F. Sevic, provides comprehensive treatment of RF PA design using the load-pull method, the most widely used and successful method of design. Intended for the newcomer to load-pull, or the seasoned expert, the book presents a systematic method of generation of load-pull contour data, and matching network design, to rapidly produce a RF PA with first-pass success. The method is suitable from HF to millimeter-wave bands, discrete or integrated, and for high-power applications. Those engaged in design or fundamental research will find this book useful, as will the student new to RF and interested in PA design.

The author presents a complete pedagogical methodology for RF PA design, starting with treatment of automated contour generation to identify optimum transistor performance with constant source power load-pull. Advanced methods of contour generation for simultaneous optimization of many variables, such as power, efficiency, and linearity are next presented. This is followed by treatment of optimum impedance identification using contour data to address specific objectives, such as optimum efficiency for a given linearity over a specific bandwidth. The final chapter presents a load-pull specific treatment of matching network design using load-pull contour data, applicable to both single-stage and multi-stage PA's. Both lumped and distributed matching network synthesis methods are described, with several worked matching network examples.

Readers will see a description of a powerful and accessible method that spans multiple RF PA disciplines, including 5G base-station and mobile applications, as well as sat-com and military applications; load-pull with CAD systems is also included. They will review information presented through a practical, hands-on perspective. The book:





Helps engineers develop systematic, accurate, and repeatable approach to RF PA design Provides in-depth coverage of using the load-pull method for first-pass design success Offers 150 illustrations and six case studies for greater comprehension of topics
List of Figures
xi
List of Tables
xxi
Acronyms, Abbreviations, and Notation xxiii
Preface xxv
Foreword xxix
Biography xxxi
1 Historical Methods of RF Power Amplifier Design
1(16)
1.1 The RF Power Amplifier
1(2)
1.2 History of RF Power Amplifier Design Methods
3(2)
1.2.1 Copper Tape and the X-Acto Knife
4(1)
1.2.2 The Shunt Stub Tuner
4(1)
1.2.3 The Cripps Method
5(1)
1.3 The Load-Pull Method of RF Power Amplifier Design
5(4)
1.3.1 History of the Load-Pull Method
6(2)
1.3.2 RF Power Amplifier Design with the Load-Pull Method
8(1)
1.4 Historical Limitations of the Load-Pull Method
9(6)
1.4.1 Minimum Impedance Range
10(1)
1.4.2 Independent Harmonic Tuning
11(1)
1.4.3 Peak and RMS Power Capability
12(1)
1.4.4 Operating and Modulation Bandwidth
12(1)
1.4.5 Linearity Impairment
13(1)
1.4.6 Rigorous Error Analysis
14(1)
1.4.7 Acoustically Induced Vibrations
14(1)
1.5 Closing Remarks
15(1)
References
15(2)
2 Automated Impedance Synthesis
17(28)
2.1 Methods of Automated Impedance Synthesis
18(8)
2.1.1 Passive Electromechanical Impedance Synthesis
18(3)
2.1.2 The Active-Loop Method of Impedance Synthesis
21(3)
2.1.3 The Active-Injection Method of Impedance Synthesis
24(2)
2.2 Understanding Electromechanical Tuner Performance
26(11)
2.2.1 Impedance Synthesis Range
26(1)
2.2.2 Operating Bandwidth
27(2)
2.2.3 Modulation Bandwidth
29(2)
2.2.4 Tuner Insertion Loss
31(1)
2.2.5 Power Capability
32(2)
2.2.6 Vector Repeatability
34(1)
2.2.7 Impedance State Resolution and Uniformity
35(1)
2.2.8 Factors Influencing Tuner Speed
36(1)
2.2.9 The Slab-Line to Coaxial Transition
37(1)
2.3 Advanced Considerations in Impedance Synthesis
37(6)
2.3.1 Independent Harmonic Impedance Synthesis
37(4)
2.3.2 Sub-1 £2 Impedance Synthesis
41(2)
2.4 Closing Remarks
43(1)
References
43(2)
3 Load-Pull System Architecture and Verification
45(18)
3.1 Load-Pull System Architecture
46(8)
3.1.1 Load-Pull System Block Diagram
46(2)
3.1.2 Source and Load Blocks
48(4)
3.1.3 Signal Synthesis and Analysis
52(1)
3.1.4 Large-Signal Input Impedance Measurement
53(1)
3.1.5 AM-AM, AM-PM, and IM Phase Measurement
53(1)
3.1.6 Dynamic Range Optimization
54(1)
3.2 The DC Power Source
54(3)
3.2.1 Charge Storage, Memory, and Video Bandwidth
55(1)
3.2.2 Load-Pull of True PAE
56(1)
3.2.3 The Effect of DC Bias Network Loss
57(1)
3.3 The AGr Method of System Verification
57(3)
3.4 Electromechanical Tuner Calibration
60(1)
3.5 Closing Remarks
60(1)
References
61(2)
4 Load-Pull Data Acquisition and Contour Generation
63(34)
4.1 Constant Source Power Load-Pull
64(13)
4.1.1 Load-Pull with a Single Set of Contours
65(4)
4.1.2 Load-Pull with Two or More Sets of Contours
69(4)
4.1.3 Load-Pull for Signal Quality Optimization
73(3)
4.1.4 Large-Signal Input Impedance
76(1)
4.2 Fixed-Parametric Load-Pull
77(5)
4.2.1 Fixed Load Power
77(2)
4.2.2 Fixed Gain Compression
79(1)
4.2.3 Fixed Peak-Average Ratio
79(1)
4.2.4 Fixed Signal Quality
80(1)
4.2.5 Treating Multiple Contour Intersections
81(1)
4.3 Harmonic Load-Pull
82(5)
4.3.1 Second Harmonic Load-Pull
83(2)
4.3.2 Third-Harmonic Load-Pull
85(1)
4.3.3 Higher-Order Effects and Inter-harmonic Coupling
85(1)
4.3.4 Baseband Load-Pull for Video Bandwidth Optimization
85(2)
4.4 Swept Load-Pull
87(1)
4.4.1 Swept Available Source Power
87(1)
4.4.2 Swept Bias
88(1)
4.4.3 Swept Frequency
88(1)
4.5 Advanced Techniques of Data Acquisition
88(6)
4.5.1 Simplified Geometric-Logical Search
89(1)
4.5.2 Synthetic Geometric-Logical Search
89(2)
4.5.3 Multidimensional Load-Pull and Data Slicing
91(2)
4.5.4 Min-Max Peak Searching
93(1)
4.6 Closing Remarks
94(1)
References
95(2)
5 Optimum Impedance Identification
97(18)
5.1 Physical Interpretation of the Optimum Impedance
97(2)
5.2 The Optimum Impedance Trajectory
99(2)
5.2.1 Optimality Condition
99(1)
5.2.2 Uniqueness Condition
100(1)
5.2.3 Terminating Impedance
100(1)
5.3 Graphical Extraction of the Optimum Impedance
101(4)
5.3.1 Optimum Impedance State Extraction
101(1)
5.3.2 Optimum Impedance Trajectory Extraction
102(2)
5.3.3 Treatment of Orthogonal Contours
104(1)
5.4 Optimum Impedance Extraction from Load-Pull Contours
105(7)
5.4.1 Simultaneous Average Load Power and PAE
106(1)
5.4.2 Simultaneous Average Load Power, PAE, and Signal Quality
107(1)
5.4.3 Optimum Impedance Extraction Under Fixed-Parametric Load-Pull
108(1)
5.4.4 PAE and Signal Quality Extraction Under Constant Average Load Power
109(1)
5.4.5 Optimum Impedance Extraction with Bandwidth as a Constraint
110(2)
5.4.6 Extension to Source-Pull
112(1)
5.4.7 Extension to Harmonic and Base-Band Load-Pull
112(1)
5.5 Closing Remarks
112(3)
6 Matching Network Design with Load-Pull Data
115(30)
6.1 Specification of Matching Network Performance
116(1)
6.2 The Butterworth Impedance Matching Network
116(5)
6.2.1 The Butterworth L-Section Prototype
117(2)
6.2.2 Analytical Solution of the Butterworth Matching Network
119(1)
6.2.3 Graphical Solution of the Butterworth Matching Network
120(1)
6.3 Physical Implementation of the Butterworth Matching Network
121(9)
6.3.1 The Lumped-Parameter Butterworth Matching Network
122(2)
6.3.2 The Distributed-Parameter Butterworth Matching Network
124(2)
6.3.3 The Hybrid-Parameter Butterworth Matching Network
126(4)
6.4 Supplemental Matching Network Responses
130(5)
6.4.1 The Chebyshev Response
131(1)
6.4.2 The Hecken and Klopfenstein Responses
131(4)
6.4.3 The Bessel-Thompson Response
135(1)
6.5 Matching Network Loss
135(3)
6.5.1 Definition of Matching Network Loss
135(1)
6.5.2 The Effects of Matching Network Loss
136(1)
6.5.3 Minimizing Matching Network Loss
137(1)
6.6 Optimum Harmonic Termination Design
138(4)
6.6.1 Optimally Engineered Waveforms
138(2)
6.6.2 Physical Implementation of Optimum Harmonic Terminations
140(1)
6.6.3 Optimum Harmonic Terminations in Practice
141(1)
6.7 Closing Remarks
142(1)
References
143(2)
Index 145
DR. JOHN F. SEVIC has held design positions at Motorola, Qualcomm, Tropian, Cree, Maury Microwave, and Focus Microwave, and is currently at Maja Systems, where he is engaged in millimeter-wave antenna design. John is inventor of one of the most widely used methods of battery-life improvement for mobile phones, stochastic efficiency optimization, found in virtually all mobile phone platforms. He has served on the IEEE Microwave Theory and Techniques Editorial Review Board, IEEE IMS TPC, and IEEE ARFTG TPC. John is lead inventor of ten US patents, with several pending, and has a Ph.D., MS, and BS, all in electrical engineering.