Muutke küpsiste eelistusi

E-raamat: Load Testing of Bridges: Two Volume Set

Edited by (Delft University of Technology, The Netherlands)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Load Testing of Bridges, featuring contributions from almost fifty authors from around the world across two interrelated volumes, deals with the practical aspects, the scientific developments, and the international views on the topic of load testing of bridges.

Volume 12, Load Testing of Bridges: Current practice and Diagnostic Load Testing, starts with a background to bridge load testing, including the historical perspectives and evolutions, and the current codes and guidelines that are governing in countries around the world. The second part of the book deals with preparation, execution, and post-processing of load tests on bridges. The third part focuses on diagnostic load testing of bridges.

Volume 13, Load Testing of Bridges: Proof Load Testing and the Future of Load Testing, focuses first on proof load testing of bridges. It discusses the specific aspects of proof load testing during the preparation, execution, and post-processing of such a test (Part 1). The second part covers the testing of buildings. The third part discusses novel ideas regarding measurement techniques used for load testing. Methods using non-contact sensors, such as photography- and video-based measurement techniques are discussed. The fourth part discusses load testing in the framework of reliability-based decision-making and in the framework of a bridge management program. The final part of the book summarizes the knowledge presented across the two volumes, as well as the remaining open questions for research, and provides practical recommendations for engineers carrying out load tests.

This work will be of interest to researchers and academics in the field of civil/structural engineering, practicing engineers and road authorities worldwide.
Volume 12: Load Testing of Bridges: Current Practice and Diagnostic Load Testing
Editorial
xiii
About the Book Series Editor
xv
Preface
xix
About the Editor
xxvii
Author Data
xxix
Contributors List
xxxiii
List of Tables
xxxv
List of Figures
xxxvii
Part I Background to Bridge Load Testing
Chapter 1 Introduction
3(6)
Eva O.L. Lantsoght
1.1 Background
3(1)
1.2 Scope of application
4(1)
1.3 Aim of this book
5(1)
1.4 Outline of this book
6(3)
Chapter 2 History of Load Testing of Bridges
9(20)
Mohamed K. ElBatanouny
Gregor Schacht
Guido Bolle
2.1 Introduction
9(2)
2.2 Bridge load testing in Europe
11(9)
2.3 Bridge load testing in North America
20(4)
2.4 The potential of load testing for the evaluation of existing structures
24(1)
2.5 Summary and conclusions
25(1)
References
25(4)
Chapter 3 Current Codes and Guidelines
29(42)
Eva O.L. Lantsoght
3.1 Introduction
29(1)
3.2 German guidelines
30(1)
3.2.1 General
30(1)
3.2.2 Safety philosophy and target proof load
31(1)
3.2.3 Stop criteria
32(2)
3.3 British guidelines
34(1)
3.3.1 General
34(1)
3.3.2 Preparation and application of loading
35(1)
3.3.3 Evaluation of the load test
36(1)
3.4 Irish guidelines
36(1)
3.4.1 General
36(1)
3.4.2 Recommendations for applied loading
37(1)
3.4.3 Evaluation of the load test
37(1)
3.5 Guidelines in the United States
37(1)
3.5.1 Bridges: Manual for Bridge. Rating through Load Testing
37(1)
3.5.1.1 General
37(1)
3.5.1.2 Preparation of load tests
39(1)
3.5.1.3 Execution of load tests
40(1)
3.5.1.4 Determination of the rating factor after a diagnostic load test
41(1)
3.5.1.5 Determination of the rating factor after a proof load test
42(1)
3.5.2 Buildings
43(1)
3.5.2.1 ACI 437.1: "Load tests of concrete structures: methods, magnitude, protocols, and acceptance criteria"
43(1)
3.5.2.2 New buildings: ACI 318-14
48(1)
3.5.2.3 Existing buildings: ACI 437.2M-13
49(4)
3.6 French guidelines
53(1)
3.6.1 General
53(1)
3.6.2 Recommendations for load application
53(1)
3.6.3 Evaluation of the load test
54(1)
3.7 Czech Republic and Slovakia
54(1)
3.7.1 General requirements
54(1)
3.7.2 Acceptance criteria
54(1)
3.7.3 Dynamic load tests
56(1)
3.8 Spanish guidelines
57(1)
3.8.1 General considerations
57(1)
3.8.2 Loading requirements
58(1)
3.8.3 Stop and acceptance criteria for static load tests
59(1)
3.8.4 Acceptance criteria for dynamic load tests
62(2)
3.9 Other countries
64(1)
3.9.1 Italy
64(1)
3.9.2 Switzerland
64(1)
3.9.3 Poland
65(1)
3.9.4 Hungary
65(2)
3.10 Current developments
67(1)
3.11 Discussion
67(1)
3.12 Summary
68(1)
References
68(3)
Part II Preparation, Execution, and Post-Processing of Load Tests on Bridges
71(82)
Chapter 4 General Considerations
73(24)
Eva O.L. Lantsoght
Jacob W. Schmidt
4.1 Initial considerations
73(1)
4.1.1 Introductory remarks
73(1)
4.1.2 Load test types and their goals
73(1)
4.1.3 Type of bridge structure or element
74(1)
4.1.4 Structural inspections, background codes, and literature
74(4)
4.2 Types of load tests, and which type of load test to select
78(1)
4.2.1 Diagnostic load tests
78(1)
4.2.2 Proof load tests
79(1)
4.2.3 Failure tests
81(1)
4.3 When to load test a bridge, and when not to load test
82(2)
4.4 Structure type considerations
84(1)
4.4.1 Steel bridges
84(1)
4.4.2 Reinforced concrete bridges
84(1)
4.4.3 Prestressed concrete bridges
85(1)
4.4.4 Masonry bridges
86(1)
4.4.5 Timber bridges
87(1)
4.5 Safety requirements during load testing
87(1)
4.5.1 General considerations
87(1)
4.5.2 Safety of personnel and traveling public
88(1)
4.5.3 Structural safety
90(1)
4.6 Summary and conclusions
90(1)
References
91(6)
Chapter 5 Preparation of Load Tests
97(32)
Eva O.L. Lantsoght
Jacob W. Schmidt
5.1 Introduction
97(1)
5.2 Determination of test objectives
98(1)
5.3 Bridge inspection
99(1)
5.3.1 Inspection results
99(1)
5.3.2 Limitations of testing site
101(3)
5.4 Preliminary calculations and development of finite element model
104(1)
5.4.1 Development of finite element model
104(1)
5.4.2 Assessment calculations
106(1)
5.4.3 Estimation of bridge behavior during load test
108(1)
5.4.4 Shear capacity considerations
110(1)
5.5 Planning and preparation of load test
111(1)
5.5.1 Planning
111(1)
5.5.2 Personnel requirements
113(1)
5.5.3 Loading requirements
113(1)
5.5.4 Traffic control and safety
117(1)
5.5.5 Measurements and sensor plan
119(6)
5.6 Summary and conclusions
125(2)
References
127(2)
Chapter 6 General Considerations for the Execution of Load Tests
129(12)
Eva O.L. Lantsoght
Jacob W Schmidt
6.1 Introduction
129(1)
6.2 Loading equipment
130(2)
6.3 Measurement equipment
132(1)
6.3.1 Measurement requirements
132(1)
6.3.2 Data acquisition and visualization equipment
133(1)
6.3.3 Sensors
135(1)
6.3.4 Interpretation of measurements during load test
136(1)
6.4 Practical aspects of execution
137(1)
6.4.1 Communication
137(1)
6.4.2 Safety
137(1)
6.5 Summary and conclusions
138(2)
References
140(1)
Chapter 7 Post-Processing and Bridge Assessment
141(12)
Eva O.L. Lantsoght
Jacob W. Schmidt
7.1 Introduction
141(1)
7.2 Post-processing of measurement data
142(1)
7.2.1 Applied load
142(1)
7.2.2 Verification of measurement data
142(1)
7.2.3 Correction for support deformations
143(1)
7.2.4 Correction for influence of temperature and humidity
144(1)
7.2.5 Reporting of measurements
144(3)
7.3 Updating finite element model with measurement data
147(1)
7.4 Bridge assessment
148(1)
7.5 Formulation of recommendations for maintenance or operation
149(1)
7.6 Recommendations for reporting of load tests
149(1)
7.7 Summary and conclusions
150(1)
References
151(2)
Part III Diagnostic Load Testing of Bridges
153(138)
Chapter 8 Methodology for Diagnostic Load Testing
155(26)
Eva O.L. Lantsoght
Jonathan Bonifaz
Telmo A. Sanchez
Devin K. Harris
8.1 Introduction
155(2)
8.2 Preparation of diagnostic load tests
157(1)
8.2.1 New bridge diagnostic testing
157(1)
8.2.2 Existing bridge diagnostic testing
161(1)
8.3 Procedures for the execution of diagnostic load testing
162(1)
8.3.1 Loading methods
162(1)
8.3.2 Monitoring bridge behavior during test
163(1)
8.4 Processing diagnostic load testing results
164(1)
8.4.1 On-site validation and review of test data
164(1)
8.4.2 Processing and reporting test data
166(1)
8.4.3 Verification of structural responses for new bridges
166(1)
8.4.4 Calibration of analytical model for existing bridges
167(1)
8.5 Evaluation of diagnostic load testing results
168(1)
8.5.1 Evaluation of results for new bridges
168(1)
8.5.2 Improved assessment for existing bridges
171(1)
8.6 Summary and conclusions
172(1)
References
172(4)
Appendix: Determination of Experimental Rating Factor According to Barker
176(5)
Chapter 9 Example Field Test to Load Rate a Prestressed Concrete Bridge
181(20)
Eli S. Hernandez
John J. Myers
9.1 Introduction
181(1)
9.2 Sample bridge description
182(1)
9.3 Bridge instrumentation plan
183(1)
9.3.1 Installation of embedded sensors
183(1)
9.3.2 Data acquisition by non-contact and remote equipment
184(1)
9.3.2.1 Automated total station (ATS)
185(1)
9.3.2.2 Remote sensing vibrometer (RSV-150)
186(1)
9.4 Diagnostic load test program
186(1)
9.4.1 Static load test
187(1)
9.4.2 Dynamic load test
187(1)
9.5 Test results
187(1)
9.5.1 Static load tests
187(1)
9.5.1.1 Vertical deflection
187(1)
9.5.1.2 Lateral distribution factor (deflection measurements)
191(1)
9.5.1.3 Girders' longitudinal strain
191(1)
9.5.1.4 Lateral distribution factor (strain measurements)
193(1)
9.5.2 Dynamic load tests
193(2)
9.6 Girder distribution factors
195(2)
9.7 Load rating of Bridge A7957 by field load testing
197(2)
9.8 Recommendations
199(1)
9.9 Summary
199(1)
References
200(1)
Chapter 10 Example Load Test: Diagnostic Testing of a Concrete Bridge with a Large Skew Angle
201(16)
Mauricio Diaz Arancibia
Pinar Okumus
10.1 Summary
201(1)
10.2 Characteristics of the bridge tested
202(1)
10.3 Goals of load testing
202(1)
10.4 Preliminary analytical model
203(1)
10.5 Coordination of the load test
204(1)
10.6 Instrumentation plan
205(1)
10.6.1 Sensor types and application methods
205(1)
10.6.2 Sensor locations
208(1)
10.7 Data acquisition
209(1)
10.8 Loading
209(1)
10.8.1 Load type and magnitude
209(1)
10.8.2 Load configurations and locations
210(1)
10.9 Planning and scheduling
211(1)
10.10 Redundancy and repeatability
211(1)
10.11 Results
212(1)
10.11.1 Preliminary evaluation of results
212(1)
10.11.2 Shear strain influence lines and shear distribution
212(1)
10.11.3 Bending strain influence lines and moment distribution
213(1)
10.11.4 Deck strains under short-term loading
214(1)
10.12 Conclusions and recommendations
214(2)
Acknowledgements
216(1)
References
216(1)
Chapter 11 Diagnostic Load Testing of Bridges - Background and Examples of Application
217(32)
Piotr Olaszek
Joan R. Casas
11.1 Background
217(1)
11.1.1 Definition
217(1)
11.1.2 Objectives
218(1)
11.1.3 Planning and execution
218(1)
11.1.4 Results and safety assessment
220(1)
11.1.4.1 Static tests
221(1)
11.1.4.2 Dynamic tests
222(1)
11.2 Examples of diagnostic load testing
223(1)
11.2.1 Static load testing
223(1)
11.2.1.1 The estimation of the elastic and permanent values
223(1)
11.2.1.2 Examples of application to different types of bridges
224(10)
11.2.2 Dynamic load testing
234(1)
11.2.2.1 Extrapolation of values for quasi-static speed
234(1)
11.2.2.2 Extrapolation of values under higher speed
236(1)
11.2.2.3 Examples of dynamic testing
236(10)
11.3 Conclusions and recommendations for practice
246(1)
References
247(2)
Chapter 12 Field Testing of Pedestrian Bridges
249
Darius Bacinskas
Ronaldas Jakubovskis
Arturas Kilikevicius
12.1 Introduction
249(1)
12.1.1 Types of the tests
252(1)
12.1.2 Objectives of the tests
253(1)
12.2 Preparation for testing
254(1)
12.2.1 General guidelines
254(1)
12.2.2 Preliminary inspection of the footbridge before the tests
255(1)
12.2.3 The test program
257(1)
12.2.4 Loading of the bridge
258(1)
12.2.4.1 Static tests
258(1)
12.2.4.2 Free vibration tests
262(1)
12.2.4.3 Forced and ambient vibration tests
263(1)
12.3 Organization of the tests
264(1)
12.3.1 General requirements
264(1)
12.3.2 Measuring techniques and equipment
265(1)
12.3.3 Execution of the tests
269(1)
12.3.3.1 Static tests
269(1)
12.3.3.2 Dynamic tests
271(1)
12.4 Analysis of test results
271(1)
12.4.1 General guidelines
272(1)
12.4.2 Methods for identification of static and dynamic parameters of the bridge
272(1)
12.4.2.1 Methods for identification of static parameters of the bridge
272(1)
12.4.2.2 Methods for identification of dynamic parameters of the bridge
274(4)
12.4.3 Presentation of results
278(1)
12.5 Theoretical modeling of tested bridge
278(1)
12.5.1 Introduction
279(1)
12.5.2 Modeling techniques
279(1)
12.5.3 Comparison of experimental and theoretical results
280(1)
12.5.4 Model updating
283(1)
12.5.5 Code requirements for serviceability of footbridges
284(1)
12.5.6 Evaluation of footbridge condition based on test results
286(1)
12.6 Concluding remarks
286(1)
Acknowledgments
287(1)
References
287(4)
Author Index
291(2)
Subject Index
293(8)
Structures and Infrastructures Series
301
Volume 13: Load Testing of Bridges: Proof Load Testing and the Future of Load Testing
Editorial
xiii
About the Book Series Editor
xv
Preface
xix
About the Editor
xxvii
Author Data
xxix
Contributors List
xxxvii
List of Tables
xxxix
List of Figures
xli
Part I Proof Load Testing of Bridges
Chapter 1 Methodology for Proof Load Testing
3(24)
Eva O.L. Lantsoght
1.1 Introduction
3(2)
1.2 Determination of target proof load
5(1)
1.2.1 Dutch practice
5(1)
1.2.2 AASHTO Manual for Bridge Evaluation method
8(2)
1.3 Procedures for proof load testing
10(1)
1.3.1 Loading methods
10(1)
1.3.2 Monitoring bridge behavior during the test
13(1)
1.3.3 Stop criteria
16(3)
1.4 Processing of proof load testing results
19(1)
1.4.1 On-site data validation of sensor output
19(1)
1.4.2 Final verification of stop criteria
20(1)
1.5 Bridge assessment based on proof load tests
21(2)
1.6 Summary and conclusions
23(2)
References
25(2)
Chapter 2 Load Rating of Prestressed Concrete Bridges without Design Plans by Nondestructive Field Testing
27(40)
David V. Jauregui
Brad D. Weldon
Carlos V. Aguilar
2.1 Introduction
27(1)
2.1.1 Load rating of bridges
29(1)
2.1.2 Load testing of bridges
31(1)
2.2 Inspection and evaluation procedures
32(1)
2.2.1 In-depth inspection and field measurements
32(1)
2.2.2 Magnel diagrams
34(1)
2.2.3 Rebar scan
36(1)
2.2.3.1 Double T-beam bridges
37(1)
2.2.3.2 Box beam bridges
37(1)
2.2.3.3 I-girder bridges
38(1)
2.2.4 Load testing
39(1)
2.2.5 Serviceability ratings using proof test results
42(1)
2.2.6 Strength ratings using load rating software
43(1)
2.2.7 Final load ratings
44(1)
2.3 Case studies
44(1)
2.3.1 Bridge 8761 (double T-beam)
45(1)
2.3.2 Bridge 8825 (box beam)
52(1)
2.3.3 Bridge 8588 (I-girder)
57(6)
2.4 Conclusions
63(1)
References
64(3)
Chapter 3 Example of Proof Load Testing from Europe
67(40)
Eva O.L. Lantsoght
Dick A. Hordijk
Rutger T. Koekkoek
Cor van der Veen
3.1 Introduction to viaduct Zijlweg
67(1)
3.1.1 Existing bridges in the Netherlands
67(1)
3.1.2 Viaduct Zijlweg
69(1)
3.1.2.1 General information and history
69(1)
3.1.2.2 Material properties
70(1)
3.1.2.3 Structural system and description of tested span
71(1)
3.2 Preparation of proof load test
71(1)
3.2.1 Preliminary assessment
71(1)
3.2.2 Inspection
72(1)
3.2.3 Effect of alkali-silica reaction
76(1)
3.2.3.1 Effect of alkali-silica reaction on capacity
76(1)
3.2.3.2 Load testing of ASR-affected viaducts
80(1)
3.2.3.3 Monitoring results
80(1)
3.2.4 Determination of target proof load and position
81(1)
3.2.4.1 Finite element model
81(1)
3.2.4.2 Resulting target proof load
84(1)
3.2.5 Expected capacity and behavior
85(1)
3.2.6 Sensor plan
87(1)
3.3 Execution of proof load test
88(1)
3.3.1 Loading protocol
88(1)
3.3.2 Measurements and observations
90(1)
3.3.2.1 Load-deflection curves
90(1)
3.3.2.2 Deflection profiles
90(1)
3.3.2.3 Strains and crack width
91(1)
3.3.2.4 Movement in joint
93(1)
3.3.2.5 Influence of temperature
93(3)
3.4 Post-processing and rating
96(1)
3.4.1 Development of final graphs
96(1)
3.4.2 Comparison with stop criteria
97(1)
3.4.2.1 ACI 437.2M acceptance criteria
97(1)
3.4.2.2 German guideline stop criteria
99(1)
3.4.2.3 Proposed stop criteria
99(1)
3.4.3 Final rating
100(1)
3.4.4 Lessons learned and recommendations for practice
101(1)
3.4.5 Discussion and elements for future research
101(1)
3.5 Summary and conclusions
102(1)
Acknowledgments
103(1)
References
103(4)
Part II Testing of Buildings
107(36)
Chapter 4 Load Testing of Concrete Building Constructions
109(34)
Gregor Schacht
Guido Bolle
Steffen Marx
4.1 Historical development of load testing in Europe
109(1)
4.1.1 Introduction
109(1)
4.1.2 The role of load testing in the development of reinforced concrete constructions in Europe
110(1)
4.1.3 Development of standards and guidelines
112(1)
4.1.4 Proof load testing overshadowed by structural analysis
114(1)
4.1.5 Further theoretical and practical developments of the recent past
115(2)
4.2 Load testing of existing concrete building constructions
117(1)
4.2.1 Principal safety considerations
117(1)
4.2.2 Load testing in Germany
119(1)
4.2.2.1 Introduction
119(1)
4.2.2.2 Basics and range of application
121(1)
4.2.2.3 Planning of loading tests
124(1)
4.2.2.4 Execution and evaluation
126(2)
4.2.3 Load testing in the United States
128(1)
4.2.4 Load testing in Great Britain
129(1)
4.2.5 Load testing in other countries
130(1)
4.2.6 Comparison and assessment
131(2)
4.3 New developments
133(1)
4.3.1 Safety concept
133(1)
4.3.2 Shear load testing
134(3)
4.4 Practical recommendations
137(1)
4.5 Summary and conclusions
138(1)
References
138(5)
Part III Advances in Measurement Techniques for Load Testing
143(120)
Chapter 5 Digital Image and Video-Based Measurements
145(24)
Mohamad Alipour
Ali Shariati
Thomas Schumacher
Devin K. Harris
C.J. Riley
5.1 Introduction
145(1)
5.2 Digital image correlation (DIC) for deformation measurements
146(1)
5.2.1 Theory
146(1)
5.2.2 Equipment
147(1)
5.2.3 Strengths and limitations
148(1)
5.2.3.1 Strengths
149(1)
5.2.3.2 Limitations
149(1)
5.2.4 Case study
149(1)
5.2.4.1 Structural system details and instrumentation
149(1)
5.2.4.2 Testing
152(1)
5.2.4.3 Load testing sequence
152(1)
5.2.4.4 Results
152(3)
5.3 Eulerian virtual visual sensors (VVS) for natural frequency measurements
155(1)
5.3.1 Theory
155(1)
5.3.2 Equipment
157(1)
5.3.3 Strengths and limitations
157(1)
5.3.3.1 Strengths
157(1)
5.3.3.2 Limitations
157(1)
5.3.4 Case studies
158(1)
5.3.4.1 Estimation of cable forces on a lift bridge using natural vibration frequencies
158(1)
5.3.4.2 Identifying bridge natural vibration frequencies with forced vibration test
161(2)
5.4 Recommendations for practice
163(1)
5.4.1 Digital image correlation (DIC) for deformation measurements
164(1)
5.4.2 Eulerian virtual visual sensors (VVS) for natural frequency measurements
164(1)
5.5 Summary and conclusions
165(1)
5.6 Outlook and future trends
165(1)
Acknowledgments
166(1)
References
166(3)
Chapter 6 Acoustic Emission Measurements for Load Testing
169(30)
Mohamed ElBatanouny
Rafal Anay
Marwa A. Abdelrahman
Paul Ziehl
6.1 Introduction
169(1)
6.2 Acoustic emission-based damage identification
170(1)
6.2.1 Definitions
170(1)
6.2.2 AE parameters for damage detection
171(1)
6.2.3 Damage indicators
172(1)
6.2.3.1 Intensity analysis
173(1)
6.2.3.2 CR-LR plots
173(1)
6.2.3.3 Peak cumulative signal strength ratio
174(1)
6.2.3.4 Relaxation ratio
175(1)
6.2.3.5 B-value analysis
175(1)
6.2.3.6 Modified index of damage
175(1)
6.3 Source location during load tests
176(1)
6.3.1 Types of source location
177(1)
6.3.2 Zonal and one-dimensional source location
177(1)
6.3.3 2D source location
180(1)
6.3.4 3D source location and moment tensor analysis
184(1)
6.3.4.1 3D source location
184(1)
6.3.4.2 Crack classification and moment tensor analysis
188(4)
6.4 Discussion and recommendations for field applications
192(2)
References
194(5)
Chapter 7 Fiber Optics for Load Testing
199(36)
Joan R. Casas
Antonio Barrias
Gerardo Rodriguez Gutierrez
Sergi Villalba
7.1 Introduction
199(1)
7.1.1 Background of fiber optics operation
199(1)
7.1.2 Distributed optical fiber sensors (DOFS)
202(1)
7.1.3 Scattering in optical fibers
202(1)
7.1.4 State of the art of fiber optic sensors in load testing
204(1)
7.1.5 Advantages and disadvantages of fiber optic sensors versus other sensors for load testing
206(1)
7.2 Distributed optical fibers in load testing
207(1)
7.2.1 Introduction
207(1)
7.2.2 Experiences in laboratory: validation of the system
207(1)
7.2.2.1 Bending tests of concrete slabs
207(1)
7.2.2.2 Shear tests of partially prestressed concrete beams
214(5)
7.2.3 Application of DOFS in real structures
219(1)
7.2.3.1 San Cugat bridge in Barcelona
220(1)
7.2.3.2 Sarajevo bridge in Barcelona
224(1)
7.2.3.3 Lessons learned from the field tests
229(1)
7.3 Conclusions
230(1)
Acknowledgments
231(1)
References
231(4)
Chapter 8 Deflection Measurement on Bridges by Radar Techniques
235(28)
Carmelo Gentile
8.1 Introduction
235(2)
8.2 Radar technology and the microwave interferometer
237(7)
8.3 Accuracy and validation of the radar technique
244(1)
8.3.1 Laboratory test
244(1)
8.3.2 Comparison with position transducer data
244(1)
8.4 Static and dynamic tests of a steel-composite bridge
245(1)
8.4.1 Description of the bridge
247(1)
8.4.2 Load test: experimental procedures and radar results
247(1)
8.4.3 Ambient vibration test: experimental procedures and radar results
251(2)
8.5 A challenging application: structural health monitoring of stay cables
253(6)
8.6 Summary
259(1)
8.6.1 Advantages and disadvantages of microwave remote sensing of deflections
259(1)
8.6.2 Recommendations for practice
259(1)
8.6.3 Future developments
260(1)
Acknowledgments
260(1)
References
260(3)
Part IV Load Testing in the Framework of Reliability-Based Decision-Making and Bridge Management Decisions
263(96)
Chapter 9 Reliability-Based Analysis and Life-Cycle Management of Load Tests
265(32)
Dan M. Frangopol
David Y. Yang
Eva O.L. Lantsoght
Raphael D.J.M Steenbergen
9.1 Introduction
265(1)
9.2 Influence of load testing on reliability index
266(1)
9.2.1 General principles
266(1)
9.2.2 Effect of degradation
269(1)
9.2.3 Target reliability index and applied loads
271(1)
9.3 Required target load for updating reliability index
272(1)
9.3.1 Principles
272(1)
9.3.2 Example: viaduct De Beek - information about traffic is not available
273(1)
9.3.2.1 Description of viaduct De Beek
273(1)
9.3.2.2 Determination of required target load
276(1)
9.3.2.3 Discussion of results
278(1)
9.3.3 Example: Halvemaans Bridge - information about traffic is modeled
279(1)
9.3.3.1 Description of Halvemaans Bridge
279(1)
9.3.3.2 Determination of proof load
280(3)
9.4 Systems reliability considerations
283(3)
9.5 Life-cycle cost considerations
286(5)
9.6 Summary and conclusions
291(1)
References
292(5)
Chapter 10 Determination of Remaining Service Life of Reinforced Concrete Bridge Structures in Corrosive Environments after Load Testing
297(36)
Dimitri V. Val
Mark G. Stewart
10.1 Introduction
297(1)
10.2 Deterioration of RC structures in corrosive environments
298(1)
10.3 Reliability-based approach to structural assessment
299(1)
10.4 Corrosion initiation modeling
300(1)
10.4.1 Carbonation-induced corrosion
300(1)
10.4.2 Chloride-induced corrosion
305(3)
10.5 Corrosion propagation modeling
308(1)
10.5.1 Corrosion rate
308(1)
10.5.2 Cracking of concrete cover
309(1)
10.5.2.1 Time to crack initiation
310(1)
10.5.2.2 Time to excessive cracking
311(1)
10.5.3 Effect of corrosion on bond between concrete and reinforcing steel
312(1)
10.5.4 Effect of corrosion on reinforcing steel
315(1)
10.5.4.1 Loss of cross-sectional area due to general corrosion
315(1)
10.5.4.2 Loss of cross-sectional area due to pitting corrosion
315(3)
10.6 Effect of spatial variability on corrosion initiation and propagation
318(1)
10.7 Influence of climate change
319(3)
10.8 Illustrative examples
322(1)
10.8.1 Simple-span RC bridge - case study description
322(1)
10.8.2 Reliability-based assessment of remaining service life of the bridge subject to carbonation
323(1)
10.8.3 Reliability-based assessment of remaining service life of the bridge subject to chloride contamination
325(1)
10.8.4 Concluding remarks
327(1)
10.9 Summary
328(1)
References
328(5)
Chapter 11 Load Testing as Part of Bridge Management in Sweden
333(14)
Lennart Elfgren
Bjorn Taljsten
Thomas Blanksvard
11.1 Introduction
333(1)
11.2 History
334(1)
11.2.1 Overview of development of recommendations
334(1)
11.2.2 Which aim of load test is provided
334(1)
11.2.3 Development of recommendations
335(1)
11.3 Present practice
335(1)
11.3.1 Inspection regime of structures
335(1)
11.3.2 Levels of assessment of structures
336(1)
11.3.3 Configuration of the vehicles
336(1)
11.3.4 Development of the traffic
336(1)
11.3.5 Examples of load testing
337(1)
11.4 Future
337(1)
11.4.1 Bridge management
337(1)
11.4.2 Numerical tools
339(1)
11.4.3 Fatigue
341(1)
11.4.4 Strengthening
341(1)
11.4.5 Full-scale failure tests
342(1)
11.5 Conclusions
342(1)
Acknowledgments
343(1)
References
343(4)
Chapter 12 Load Testing as Part of Bridge Management in the Netherlands
347(12)
Ane de Boer
12.1 Introduction
347(3)
12.2 Overview of load tests on existing structures
350(2)
12.3 Inspections and re-examination
352(3)
12.4 Conclusions and outlook
355(1)
References
356(3)
Part V Conclusions and Outlook
359(6)
Chapter 13 Conclusions and Outlook
361(4)
Eva O.L. Lantsoght
13.1 Current body of knowledge on load testing
361(1)
13.2 Current research and open research questions
362(1)
13.3 Conclusions and practical recommendations
363(2)
Author Index
365(2)
Subject Index
367(10)
Structures and Infrastructures Series
377
Dr. Lantsoght graduated with a Masters Degree in Civil Engineering from the Vrije Universiteit Brussel (Brussels, Belgium) in 2008. She later earned a Master's degree in Structural Engineering at the Georgia Institute of Technology (Atlanta, Georgia, USA) in 2009 and the title of Doctor in Structural Engineering from Technische Universiteit Delft (Delft, the Netherlands) in 2013. The work experience of Dr. Lantsoght includes design work in structural and bridge engineering in Belgium (Establis, and Ney & Partners) and working as an independent consultant in structural engineering in Ecuador (Adstren). Dr. Lantsoght is an active member of the technical committees of the Transportation Research Board in Concrete Bridges (AFF-30) and Testing and Evaluation of Transportation Structures (AFF-40), a member of the technical committees of the American Concrete Institute and Deutscher Ausschuß für Stahlbeton Shear Databases (ACI-DAfStb-445-D), and the joint ACI-ASCE (American Society of Civil Engineers) committee on Design of Reinforced Concrete Slabs (ACI-ASCE 421), and an associate member of the committees on Evaluation of Concrete Bridges and Concrete Bridge Elements (ACI 342), on Shear and Torsion (ACI-ASCE 445), and on Strength Evaluation of Existing Concrete Structures (ACI 437). In the academic field, Dr. Lantsoght is a full professor at the Universidad San Francisco de Quito (Quito, Ecuador) and a researcher at Technische Universiteit Delft (Delft, Netherlands). Her field of research is the design and analysis of concrete structures and analysis of existing bridges.