Muutke küpsiste eelistusi

E-raamat: Local $L^p$-Brunn-Minkowski Inequalities for $p<1$

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Lp-Brunn-Minkowski theory for p Kolesnikov and Milman confirm the Lp-Brunn-Minkowski inequality conjecture locally for all (smooth) origin-symmetric convex bodies in . They cover global versus local formulations of the L-Brunn-Minkowski conjecture; local L-Brunn-Minkowski conjecture: infinitesimal formulation; relation to Hilbert-Brunn-Minkowski operator and linear equivariance; obtaining estimates via the Reilly Formula; the second Steklov operator and ; unconditional convex bodies and the cube; local log-Brunn-Minkowski via the Reilly Formula; continuity of ; local uniqueness for even L-Minkowski problems; and stability estimates for Brunn-Minkowski and isoperimetric inequalities. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Chapter 1 Introduction
1(8)
1.1 Previously Known Partial Results
2(1)
1.2 Main Results
3(2)
1.3 Spectral Interpretation via the Hilbert--Brunn--Minkowski operator
5(1)
1.4 Method of Proof
6(1)
1.5 Applications
6(3)
Chapter 2 Notation
9(2)
Chapter 3 Global vs. Local Formulations of the Lp-Brunn--Minkowski Conjecture
11(6)
3.1 Standard Equivalent Global Formulations
11(1)
3.2 Global vs. Local Lp-Brunn--Minkowski
12(5)
Chapter 4 Local Lp-Brunn--Minkowski Conjecture -- Infinitesimal Formulation
17(8)
4.1 Mixed Surface Area and Volume of C2 functions
17(1)
4.2 Properties of Mixed Surface Area and Volume
18(2)
4.3 Second Lp-Minkowski Inequality
20(1)
4.4 Comparison with classical p = 1 case
21(1)
4.5 Infinitesimal Formulation On Sn-1
21(1)
4.6 Infinitesimal Formulation On ∂K
22(3)
Chapter 5 Relation to Hilbert--Brunn--Minkowski Operator and Linear Equivariance
25(12)
5.1 Hilbert--Brunn--Minkowski operator
26(4)
5.2 Linear equivariance of the Hilbert--Brunn--Minkowski operator
30(3)
5.3 Spectral Minimization Problem and Potential Extremizers
33(4)
Chapter 6 Obtaining Estimates via the Reilly Formula
37(8)
6.1 A sufficient condition for confirming the local p-BM inequality
38(2)
6.2 General Estimate on D(K)
40(1)
6.3 Examples
41(4)
Chapter 7 The second Steklov operator and BH(Bn2)
45(4)
7.1 Second Steklov operator
45(1)
7.2 Computing BH(Bn2)
46(3)
Chapter 8 Unconditional Convex Bodies and the Cube
49(4)
8.1 Unconditional Convex Bodies
49(1)
8.2 The Cube
50(3)
Chapter 9 Local log-Brunn--Minkowski via the Reilly Formula
53(4)
9.1 Sufficient condition for verifying local log-Brunn--Minkowski
53(2)
9.2 An alternative derivation via estimating Bh(K)
55(2)
Chapter 10 Continuity of BH, B, D with application to Bnq
57(4)
10.1 Continuity of BH, B, D in C-topology
57(1)
10.2 The Cube
58(2)
10.3 Unit-balls of lnq
60(1)
Chapter 11 Local Uniqueness for Even Lp-Minkowski Problem
61(4)
Chapter 12 Stability Estimates for Brunn--Minkowski and Isoperimetric Inequalities
65(10)
12.1 New stability estimates for origin-symmetric convex bodies with respect to variance
65(5)
12.2 Improved stability estimates for all convex bodies with respect to asymmetry
70(5)
Bibliography 75
Alexander V. Kolesnikov, Higher School of Economics, Moscow, Russia.

Emanuel Milman, Israel Institute of Technology, Haifa, Israel.