Muutke küpsiste eelistusi

E-raamat: Local Features in Natural Images via Singularity Theory

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2165
  • Ilmumisaeg: 30-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319414713
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2165
  • Ilmumisaeg: 30-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319414713

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph considers a basic problem in the computer analysis of natural images, which are images of scenes involving multiple objects that are obtained by a camera lens or a viewer"s eye. The goal is to detect geometric features of objects in the image and to separate regions of the objects with distinct visual properties. When the scene is illuminated by a single principal light source, we further include the visual clues resulting from the interaction of the geometric features of objects, the shade/shadow regions on the objects, and the "apparent contours". We do so by a mathematical analysis using a repertoire of methods in singularity theory. This is applied for generic light directions of both the "stable configurations" for these interactions, whose features remain unchanged under small viewer movement, and the generic changes which occur under changes of view directions. These may then be used to differentiate between objects and determine their shapes and positions.

Introduction.- Overview.- Part I-Mathematical Basis for Analysis of Feature-Shade/Shadow- Contours.- Abstract Classification of Singularities Preserving Features.- Singularity Equivalence Groups Capturing Interactions.- Methods for Classification of Singularities.- Methods for Topological Classification of Singularities.- Part II-The Classification of Interactions Involving Feature- Shade/Shadow-Contours.- Stratifications of Generically Illuminated Surfaces with Geometric Features.- Realizations of Abstract Mappings Representing Projection Singularities.- Statements of the Main Classification Results.- Part III-Classifications of Interactions of Pairs of Feature- Shade/Shadow-Contours.- Stable View Projections and Transitions involving Shade/Shadow Curves on a Smooth Surface (SC).- Transitions involving Views of Geometric Features (FC).- Part IV-Classifications of Multiple Interactions.- Transitions involving Geometric Features and Shade/Shadow Curves (SFC).- Classifications of St

able Multilocal Configurations and Their Generic Transitions.- Bibliography.
Part I Preliminaries
1 Introduction
3(8)
2 Overview
11(12)
2.1 The General Model with a Fixed Light Source
11(2)
2.2 Geometric Features
13(3)
2.3 Shade/Shadows and Specularity
16(2)
2.4 Reduction to an Abstract Classification of Local Maps
18(1)
2.5 The Role of Previous Classifications and Geometric Realizations
19(4)
Part II Mathematical Basis for Analysis of Feature-Shade/Shadow-Contours
3 Apparent Contours for Projections of Smooth Surfaces
23(12)
3.1 Projections of Smooth Surfaces
23(1)
3.2 A-equivalence and the Classification of Stable Projection Maps
24(1)
3.3 Classification of Singularities of Local Projection Maps Via A-equivalence
25(3)
3.4 Relations Between Projection Singularities and the Geometry of the Surface
28(7)
4 Abstract Classification of Singularities Preserving Features
35(6)
4.1 Abstract Classifications Preserving Geometric Features
35(1)
4.2 Abstract Classification of Boundary Singularities
36(2)
4.3 Classification of Singularities on a Crease
38(1)
4.4 Classification of Singularities on a Corner
38(1)
4.5 Applications of the Classification to Shade/Shadow Curves
39(2)
5 Singularity Equivalence Groups Capturing Interactions
41(32)
5.1 Equivalence of Views Preserving Shade/Shadow and Geometric Features
41(3)
5.2 Geometric Subgroups of A and K
44(2)
5.3 Unfolding and Determinacy Theorems
46(1)
5.4 vA as a Geometric Subgroup of A
47(7)
5.5 Sufficient Conditions for Special Semianalytic Stratifications
54(3)
5.6 Proofs of the Propositions
57(8)
5.7 Geometric Criterion for Finite vA-determinacy
65(2)
5.8 Relation Between vA and vA Equivalences
67(2)
5.9 S-equivalence and Its Reduction to vA-equivalence
69(4)
6 Methods for Classification of Singularities
73(28)
6.1 Classification of Jets Via Lie Group Methods
73(1)
6.2 Unipotent Group Methods for Order of Determinacy
74(3)
6.3 Complete Transversals for Classification of Jets
77(2)
6.4 Statement of Results on Abstract Classifications
79(3)
6.5 Detailed Treatment of Two Examples
82(3)
6.6 The Abstract Models and Abstract Normal Forms
85(16)
7 Methods for Topological Classification of Singularities
101(16)
7.1 Overview
101(1)
7.2 Topological Triviality and Versality for vA-equivalence
102(1)
7.3 Sufficient Conditions for Topological Triviality
103(1)
7.4 Sufficient Conditions for Topological Versality
104(3)
7.5 Applications of Topological Methods to Classification for vA-equivalence
107(3)
7.6 Details of the Calculations for Topological vA-equivalence and Versality
110(2)
7.7 Versal Topological Equivalence of the "Semiswallowtail" Germs
112(5)
Part III The Classification of Interactions Involving Feature-Shade/Shadow-Contours
8 Stratifications of Genetically Illuminated Surfaces with Geometric Features
117(18)
8.1 Realizations of Stable Map Germs at Geometric Feature Points
117(7)
8.2 Generic Stratifications Resulting from Geometric Features and Shade/Shadow Curves
124(7)
8.3 Stratifications from Cast Shadows via Multilocal Configurations
131(2)
8.4 Summary of the Physical Interpretations of the Stratifications
133(2)
9 Realizations of Abstract Mappings Representing Projection Singularities
135(22)
9.1 Realizations in General
135(3)
9.2 Geometrical Considerations
138(6)
9.3 Examples of Realizations for Particular Stratifications
144(13)
10 Statements of the Main Classification Results
157(24)
10.1 Overview of the Main Results
157(4)
10.2 Classification of Stable Views and Curve Configurations in the Image
161(3)
10.3 Stable Curve Configurations for the Local and Multilocal Cases
164(3)
10.4 Classification of Generic Transitions of View Projection Mappings s
167(3)
10.5 Classification of Transitions on One-Dimensional Strata
170(1)
10.6 Figures Illustrating the Transitions on One Dimensional Strata
171(3)
10.7 Higher Codimension Transitions
174(7)
Part IV Classifications of Interactions of Pairs of Feature-Shade/Shadow-Contours
11 Stable View Projections and Transitions Involving Shade/Shadow Curves on a Smooth Surface (SC)
181(12)
11.1 Summary of Results in the SC Case
181(1)
11.2 Realizations of Fold Shade Singularities (SC)
182(8)
11.3 Comparison of the Present Results with Those of Donati and Stolfi
190(3)
12 Transitions Involving Views of Geometric Features (FC)
193(22)
12.1 Statement of Results
193(2)
12.2 Marking Curve Meeting Edge or Across One Sheet of a Crease
195(1)
12.3 Marking Curve Across Both Sheets of a Crease
196(2)
12.4 The Non transverse Semifold
198(3)
12.5 Classification of Generic Transitions for Apparent Contours and Corners (FC)
201(14)
Part V Classifications of Multiple Interactions
13 Transitions Involving Geometric Features and Shade/Shadow Curves (SFC)
215(28)
13.1 Classifications of Generic Transitions for Triple Interactions (SFC)
215(2)
13.2 Generic Transitions of Apparent Contours on Marking or Edge Curves with Shade/Shadow Curves or V or C1 Parabola Cast-Shadow Points
217(5)
13.3 Generic Transitions of Apparent Contours on Creases with Shade/Shadow Curves
222(2)
13.4 Ridge Crease with Cast Shadow of Crease or Shade Curve on One Sheet
224(3)
13.5 Valley Crease with Shade Curve on One Sheet and Cast Shadow of the Shade Curve on the Other Sheet
227(4)
13.6 Generic Transitions of Apparent Contours on Corners with Shade/Shadow Curves (SFC)
231(12)
14 Classifications of Stable Multilocal Configurations and Their Generic Transitions
243(10)
14.1 Classifying the vA-Stable Multigerms
243(3)
14.2 Classifying the Stable Multi-View Projections
246(2)
14.3 Classifying the Generic Transitions for Multi-View Projections...
248(5)
References 253