Muutke küpsiste eelistusi

E-raamat: Local Stabilizability Of Nonlinear Control Systems

(Politecnico Di Torino, Italy)
  • Formaat - PDF+DRM
  • Hind: 22,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Local Stabilizability Of Nonlinear Control Systems

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is one of the first books presenting stabilizability of nonlinear systems in a well-organized and detailed way, the problem, its motivation, features and results. Control systems defined by ordinary differential equations are dealt with. Many worked examples have been included. The main focus is on the mathematical aspects of the problem, but some important applications are also described. This book will be suitable as a textbook for advanced university courses, and also as a tool for control theorists and researchers. An extensive list of references is included.
Introduction and some notations - general framework: statement of the
problem; motivations and examples; definitions; linear systems; the
linearization approach; obstructions to stabilizability; controllability and
stabilizability. The Liapunov's direct method: Artstein's theorem; the
Jurdjevic-Quinn approach; asymptotic controllability; homogeneous systems;
bilinear systems - constant feedback stabilization. Indirect approaches:
local approximation; critical cases - the Center Manifold approach; cascade
systems; exact and partial linearization; minimum phase systems.
Low-dimensional systems.