|
|
1 | (178) |
|
|
2 | (22) |
|
1.1.1 Invariant Connections |
|
|
2 | (6) |
|
1.1.2 Compact Homogeneous Spaces |
|
|
8 | (5) |
|
1.1.3 Complex Homogeneous Spaces |
|
|
13 | (4) |
|
1.1.4 Projective Embeddings |
|
|
17 | (6) |
|
1.1.5 Non-compact Homogeneous Spaces |
|
|
23 | (1) |
|
|
24 | (31) |
|
1.2.1 Globally Symmetric Spaces |
|
|
24 | (4) |
|
|
28 | (2) |
|
|
30 | (3) |
|
1.2.4 Locally Symmetric Spaces |
|
|
33 | (1) |
|
|
34 | (9) |
|
1.2.6 Riemannian Symmetric Spaces |
|
|
43 | (12) |
|
1.3 Classification of Symmetric Spaces |
|
|
55 | (15) |
|
1.3.1 Symmetric Lie Algebras |
|
|
55 | (10) |
|
1.3.2 Structure of Symmetric Spaces |
|
|
65 | (5) |
|
1.4 Symmetric Subpairs and Totally Geodesic Subspaces |
|
|
70 | (3) |
|
1.5 Hermitian Symmetric Spaces |
|
|
73 | (40) |
|
1.5.1 Compact Hermitian Symmetric Spaces |
|
|
74 | (12) |
|
1.5.2 Non-compact Hermitian Symmetric Spaces |
|
|
86 | (10) |
|
1.5.3 The Exceptional Domains |
|
|
96 | (3) |
|
|
99 | (2) |
|
1.5.5 Boundary Components |
|
|
101 | (7) |
|
1.5.6 Appendix: Siegel Domains |
|
|
108 | (5) |
|
|
113 | (27) |
|
|
113 | (2) |
|
|
115 | (7) |
|
1.6.3 Some Symmetric Spaces Arising from Exceptional Groups |
|
|
122 | (2) |
|
1.6.4 Symmetric Spaces Related to SU (4) |
|
|
124 | (1) |
|
1.6.5 Hermitian Symmetric Spaces of Grassmann Type |
|
|
125 | (4) |
|
|
129 | (11) |
|
1.7 Satake Compactifications |
|
|
140 | (21) |
|
|
141 | (3) |
|
1.7.2 Borel--Serre Compactification |
|
|
144 | (3) |
|
1.7.3 The Compactification Pn of Pn = SLn(C)/SU(n) |
|
|
147 | (3) |
|
1.7.4 Satake Compactifications |
|
|
150 | (11) |
|
1.8 Morse Theory and Symmetric Spaces |
|
|
161 | (18) |
|
1.8.1 Generalizations of Morse Theory |
|
|
161 | (2) |
|
1.8.2 Applications of Morse Theory to Symmetric Spaces |
|
|
163 | (6) |
|
|
169 | (10) |
|
2 Locally Symmetric Spaces |
|
|
179 | (142) |
|
|
181 | (10) |
|
|
182 | (3) |
|
2.1.2 Classification of Arithmetic Groups (Examples) |
|
|
185 | (6) |
|
2.2 Rational Boundary Components |
|
|
191 | (12) |
|
2.2.1 The theorem of GauB-Bonnet for Arithmetic Quotients |
|
|
194 | (9) |
|
2.3 Compactifications of Arithmetic Quotients |
|
|
203 | (11) |
|
2.3.1 Borel-Serre Compactification |
|
|
203 | (3) |
|
2.3.2 Satake Compactifications |
|
|
206 | (8) |
|
2.4 Locally Hermitian Symmetric Spaces |
|
|
214 | (17) |
|
2.4.1 Rational Boundary Components |
|
|
215 | (1) |
|
2.4.2 Baily-Borel Embedding |
|
|
216 | (2) |
|
2.4.3 Toroidal Compactifications of Locally Hermitian Symmetric Varieties |
|
|
218 | (13) |
|
2.5 The Proportionality Principle |
|
|
231 | (8) |
|
2.5.1 Hirzebruch Proportionality in the Non-compact Case |
|
|
234 | (5) |
|
2.6 Locally Symmetric Subspaces; Totally Geodesic Subspaces |
|
|
239 | (12) |
|
|
240 | (3) |
|
2.6.2 Non-vanishing (Co-)Homology |
|
|
243 | (3) |
|
2.6.3 Relative Proportionality |
|
|
246 | (5) |
|
|
251 | (65) |
|
2.7.1 Spaces Deriving from Geometric Forms |
|
|
252 | (7) |
|
|
259 | (9) |
|
|
268 | (8) |
|
2.7.4 Picard Modular Varieties (Arithmetic Quotients of Complex Hyperbolic Manifolds) |
|
|
276 | (12) |
|
2.7.5 Hyperbolic D-Planes |
|
|
288 | (11) |
|
2.7.6 Arithmetic Quotients of Hermitian Symmetric Spaces of Grassmann Type |
|
|
299 | (13) |
|
2.7.7 Janus-Like Algebraic Varieties |
|
|
312 | (4) |
|
2.8 Locally Semisimple Symmetric Spaces |
|
|
316 | (5) |
|
3 Locally Mixed Symmetric Spaces |
|
|
321 | (54) |
|
3.1 Mixed Symmetric Spaces |
|
|
322 | (9) |
|
3.1.1 Mixed Symmetric Pairs |
|
|
322 | (1) |
|
3.1.2 Morphisms of Mixed Symmetric Pairs |
|
|
323 | (6) |
|
3.1.3 Extensions of Mixed Symmetric Spaces to Compactifications |
|
|
329 | (2) |
|
3.2 Locally Mixed Symmetric Spaces |
|
|
331 | (11) |
|
3.2.1 Structure of the Fiber |
|
|
339 | (3) |
|
|
342 | (16) |
|
3.3.1 Examples Deriving from Geometric Forms |
|
|
342 | (8) |
|
3.3.2 Examples Arising from Exceptional Groups |
|
|
350 | (8) |
|
3.4 Locally Mixed Symmetric Spaces and Compactifications |
|
|
358 | (7) |
|
3.4.1 LMSS and the Borel-Serre Compactification |
|
|
358 | (4) |
|
3.4.2 Embedding Locally Symmetric Spaces in Larger Ones |
|
|
362 | (3) |
|
|
365 | (10) |
|
|
375 | (112) |
|
|
376 | (30) |
|
|
376 | (5) |
|
4.1.2 Variation of Hodge Structures |
|
|
381 | (4) |
|
|
385 | (9) |
|
4.1.4 Hodge Structures of Weight 2 |
|
|
394 | (12) |
|
4.2 Hodge Structures of Weight 1 |
|
|
406 | (19) |
|
|
406 | (2) |
|
|
408 | (6) |
|
4.2.3 Families of Abelian Varieties |
|
|
414 | (11) |
|
|
425 | (6) |
|
4.3.1 LMSS of Hermitian Type |
|
|
425 | (1) |
|
|
426 | (1) |
|
4.3.3 Polarized Hodge Structures of Weight 1 |
|
|
427 | (1) |
|
4.3.4 Characterization of Kuga Fiber Spaces |
|
|
428 | (3) |
|
4.4 Symplectic Representations of Q-Groups |
|
|
431 | (18) |
|
4.4.1 Hermitian Forms, Symplectic Forms and Involutions |
|
|
431 | (1) |
|
4.4.2 Holomorphic Embeddings of Symmetric Domains into a Siegel Space |
|
|
432 | (11) |
|
4.4.3 Classification of Kuga Fiber Spaces |
|
|
443 | (6) |
|
4.5 Pel Structures and Equivariant Embeddings |
|
|
449 | (2) |
|
4.6 Modular Subvarieties, Boundary Components and Degenerations |
|
|
451 | (14) |
|
|
451 | (2) |
|
|
453 | (5) |
|
4.6.3 Namikawa's Compactification |
|
|
458 | (7) |
|
|
465 | (18) |
|
4.7.1 Hodge Structures of Weight 2 |
|
|
466 | (1) |
|
4.7.2 Families of Abelian Varieties with Real Multiplication |
|
|
467 | (1) |
|
4.7.3 Families of Abelian Varieties with Complex Multiplication |
|
|
467 | (5) |
|
4.7.4 Families of Abelian Varieties with Quaternion Multiplication |
|
|
472 | (1) |
|
4.7.5 Hyperbolic D-Planes |
|
|
472 | (5) |
|
4.7.6 A Ball Quotient Related to a Division Algebra |
|
|
477 | (6) |
|
|
483 | (4) |
|
|
487 | (56) |
|
|
489 | (2) |
|
|
491 | (3) |
|
|
494 | (4) |
|
5.4 Homological and Functional Invariants |
|
|
498 | (2) |
|
5.5 The Family of Elliptic Surfaces with Given Invariants |
|
|
500 | (9) |
|
5.6 Numerical Invariants of Elliptic Surfaces |
|
|
509 | (8) |
|
5.7 The Exponential Sequence |
|
|
517 | (5) |
|
5.8 Elliptic Modular Surfaces |
|
|
522 | (8) |
|
5.9 The Classifying Map of an Elliptic Surface |
|
|
530 | (3) |
|
|
533 | (3) |
|
5.11 Deformations and Moduli |
|
|
536 | (5) |
|
5.12 Appendix: Curves on a Compact Complex Surface |
|
|
541 | (2) |
|
|
543 | (74) |
|
|
543 | (8) |
|
|
543 | (3) |
|
|
546 | (1) |
|
|
547 | (4) |
|
6.2 Topology and Differential Geometry |
|
|
551 | (16) |
|
6.2.1 Homotopy, Classifying Spaces and Fiber Bundles |
|
|
551 | (2) |
|
6.2.2 Leray-Hirsch Theorem |
|
|
553 | (1) |
|
6.2.3 Characteristic Classes |
|
|
554 | (2) |
|
6.2.4 Differential Geometry |
|
|
556 | (3) |
|
6.2.5 Lie Groups and Lie Algebras |
|
|
559 | (8) |
|
6.3 Complex Geometry and Algebraic Groups |
|
|
567 | (13) |
|
6.3.1 Complex Manifolds and Algebraic Varieties |
|
|
568 | (3) |
|
|
571 | (2) |
|
|
573 | (2) |
|
|
575 | (2) |
|
|
577 | (3) |
|
6.4 Exceptional Algebraic and Lie Groups |
|
|
580 | (14) |
|
|
580 | (1) |
|
|
581 | (3) |
|
|
584 | (3) |
|
6.4.4 Exceptional Lie Algebras |
|
|
587 | (7) |
|
|
594 | (5) |
|
6.5.1 Isotropic Subspaces |
|
|
594 | (2) |
|
6.5.2 Non-degenerate Subspaces |
|
|
596 | (1) |
|
6.5.3 The Index of PΓ(N) in PSp2g(Z) |
|
|
597 | (2) |
|
|
599 | (18) |
Index |
|
617 | |