Muutke küpsiste eelistusi

E-raamat: Logarithmic Forms and Diophantine Geometry

(University of Cambridge),
  • Formaat: PDF+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 17-Jan-2008
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511372551
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 137,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 17-Jan-2008
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511372551
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There is now much interplay between studies on logarithmic forms and deep aspects of arithmetic algebraic geometry. New light has been shed, for instance, on the famous conjectures of Tate and Shafarevich relating to abelian varieties and the associated celebrated discoveries of Faltings establishing the Mordell conjecture. This book gives an account of the theory of linear forms in the logarithms of algebraic numbers with special emphasis on the important developments of the past twenty-five years. The first part covers basic material in transcendental number theory but with a modern perspective. The remainder assumes some background in Lie algebras and group varieties, and covers, in some instances for the first time in book form, several advanced topics. The final chapter summarises other aspects of Diophantine geometry including hypergeometric theory and the André-Oort conjecture. A comprehensive bibliography rounds off this definitive survey of effective methods in Diophantine geometry.

Arvustused

"This book gives the necessary intuitive background to study the original journal articles of Baker, Masser, Wüstholz and others..." Yuri Bilu, Mathematical Reviews

Muu info

An account of effective methods in transcendental number theory and Diophantine geometry by eminent authors.
Preface ix
Transcendence origins
1(23)
Liouville's theorem
1(4)
The Hermite--Lindemann theorem
5(4)
The Siegel--Shidlovsky theory
9(4)
Siegel's lemma
13(3)
Mahler's method
16(4)
Riemann hypothesis over finite fields
20(4)
Logarithmic forms
24(22)
Hilbert's seventh problem
24(1)
The Gelfond--Schneider theorem
25(3)
The Schneider--Lang theorem
28(4)
Baker's theorem
32(1)
The Δ-functions
33(3)
The auxiliary function
36(3)
Extrapolation
39(2)
State of the art
41(5)
Diophantine problems
46(24)
Class numbers
46(3)
The unit equations
49(3)
The Thue equation
52(2)
Diophantine curves
54(3)
Practical computations
57(4)
Exponential equations
61(5)
The abc-conjecture
66(4)
Commutative algebraic groups
70(19)
Introduction
70(3)
Basic concepts in algebraic geometry
73(1)
The groups Ga and Gm
74(2)
The Lie algebra
76(2)
Characters
78(2)
Subgroup varieties
80(2)
Geometry of Numbers
82(7)
Multiplicity estimates
89(20)
Hilbert functions in degree theory
89(4)
Differential length
93(2)
Algebraic degree theory
95(2)
Calculation of the Jacobi rank
97(4)
The Wustholz theory
101(5)
Algebraic subgroups of the torus
106(3)
The analytic subgroup theorem
109(40)
Introduction
109(8)
New applications
117(7)
Transcendence properties of rational integrals
124(4)
Algebraic groups and Lie groups
128(3)
Lindemann's theorem for abelian varieties
131(4)
Proof of the integral theorem
135(1)
Extended multiplicity estimates
136(4)
Proof of the analytic subgroup theorem
140(5)
Effective constructions on group varieties
145(4)
The quantitative theory
149(18)
Introduction
149(1)
Sharp estimates for logarithmic forms
150(4)
Analogues for algebraic groups
154(4)
Isogeny theorems
158(4)
Discriminants, polarisations and Galois groups
162(3)
The Mordell and Tate conjectures
165(2)
Further aspects of Diophantine geometry
167(11)
Introduction
167(1)
The Schmidt subspace theorem
167(3)
Faltings' product theorem
170(1)
The Andre--Oort conjecture
171(2)
Hypergeometric functions
173(3)
The Manin--Mumford conjecture
176(2)
References 178(16)
Index 194
Alan Baker ,FRS, is Emeritus Professor of Pure Mathematics in the University of Cambridge and Fellow of Trinity College, Cambridge. He has received numerous international awards, including, in 1970, a Fields medal for his work in number theory. This is his third authored book: he has edited four others for publication.