Preface |
|
xv | |
Acknowledgements |
|
xvii | |
PART I |
|
|
|
3 | (16) |
|
|
3 | (3) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
Why Knowledge representation and reasoning? |
|
|
6 | (5) |
|
|
7 | (1) |
|
Why knowledge representation? |
|
|
8 | (2) |
|
|
10 | (1) |
|
Knowledge representation systems |
|
|
11 | (3) |
|
The Knowledge and symbol levels |
|
|
12 | (1) |
|
A functional view: Tell and Ask |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (2) |
|
|
16 | (1) |
|
|
17 | (2) |
|
A First-Order Logical Language |
|
|
19 | (24) |
|
|
19 | (2) |
|
|
21 | (2) |
|
The syntax of the language L |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
26 | (1) |
|
Term and formula semantic evaluation |
|
|
27 | (1) |
|
Satisfiability, implication and validity |
|
|
28 | (1) |
|
|
29 | (5) |
|
Why a proof theory for L? |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (2) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (3) |
|
An Epistemic Logical Language |
|
|
43 | (14) |
|
|
43 | (1) |
|
Known vs. potential instances |
|
|
44 | (1) |
|
Three approaches to incomplete knowledge |
|
|
44 | (2) |
|
|
46 | (2) |
|
|
48 | (1) |
|
Objective knowledge in possible worlds |
|
|
49 | (2) |
|
Meta-knowledge and some simplifications |
|
|
51 | (3) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
Logical Properties of Knowledge |
|
|
57 | (22) |
|
|
57 | (2) |
|
|
59 | (2) |
|
|
61 | (3) |
|
|
64 | (3) |
|
|
67 | (6) |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (3) |
|
|
76 | (1) |
|
|
77 | (2) |
|
The Tell and Ask Operations |
|
|
79 | (18) |
|
|
79 | (1) |
|
|
80 | (1) |
|
The initial epistemic state: e0 |
|
|
81 | (1) |
|
The monotonicity of knowledge |
|
|
82 | (1) |
|
|
83 | (2) |
|
|
85 | (3) |
|
|
88 | (4) |
|
|
88 | (2) |
|
|
90 | (2) |
|
|
92 | (2) |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (2) |
|
Knowledge Bases as Representations of Epistemic States |
|
|
97 | (14) |
|
Equivalent epistemic states |
|
|
97 | (2) |
|
Representing knowledge symbolically |
|
|
99 | (2) |
|
Some epistemic states are not representable |
|
|
101 | (1) |
|
Representable states are sufficient |
|
|
102 | (3) |
|
Finite representations are not sufficient |
|
|
105 | (2) |
|
Representability and Tell |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (2) |
|
The Representation Theorem |
|
|
111 | (16) |
|
|
112 | (1) |
|
Representing the known instances of a formula |
|
|
113 | (4) |
|
Reducing arbitrary sentences to objective terms |
|
|
117 | (1) |
|
Tell and Ask at the symbol level |
|
|
118 | (1) |
|
The example KB reconsidered |
|
|
119 | (5) |
|
Wh-questions at the symbol level |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
125 | (2) |
|
|
127 | (16) |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
130 | (3) |
|
Characterizing Ask and Tell |
|
|
133 | (1) |
|
|
134 | (4) |
|
|
138 | (2) |
|
|
140 | (3) |
PART II |
|
|
Only-Knowing and Autoepistemic Logic |
|
|
143 | (20) |
|
Examples of autoepistemic reasoning in OL |
|
|
143 | (5) |
|
Stable sets and stable expansions |
|
|
148 | (1) |
|
|
149 | (2) |
|
Relation to stable expansions |
|
|
151 | (2) |
|
Computing stable expansions |
|
|
153 | (2) |
|
|
155 | (3) |
|
|
158 | (1) |
|
|
159 | (1) |
|
Where do we go from here? |
|
|
160 | (1) |
|
|
161 | (2) |
|
On the Proof Theory of OL |
|
|
163 | (16) |
|
Knowing at least and at most |
|
|
163 | (2) |
|
|
165 | (3) |
|
Propositional completeness |
|
|
168 | (5) |
|
|
173 | (3) |
|
|
176 | (1) |
|
Where do we go from here? |
|
|
176 | (1) |
|
|
176 | (3) |
|
|
179 | (16) |
|
The logic of only-knowing-about |
|
|
179 | (7) |
|
|
180 | (1) |
|
Some properties of only-knowing-about |
|
|
181 | (4) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (5) |
|
|
192 | (1) |
|
Where do we go from here? |
|
|
192 | (1) |
|
|
193 | (2) |
|
Avoiding Logical Omniscience |
|
|
195 | (28) |
|
|
197 | (7) |
|
|
199 | (4) |
|
Computing explicit belief |
|
|
203 | (1) |
|
|
204 | (16) |
|
|
208 | (3) |
|
Deciding belief implication |
|
|
211 | (9) |
|
|
220 | (1) |
|
Where do we go from here? |
|
|
220 | (1) |
|
|
221 | (2) |
|
|
223 | (22) |
|
|
223 | (4) |
|
|
223 | (1) |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
227 | (2) |
|
Representing the explicity believed instances of a formula |
|
|
229 | (2) |
|
Reducing arbitrary sentences to objective terms |
|
|
231 | (3) |
|
|
234 | (3) |
|
|
237 | (4) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (2) |
|
|
241 | (1) |
|
Where do we go from here? |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
245 | (28) |
|
|
245 | (6) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
The frame problem and a solution |
|
|
248 | (2) |
|
|
250 | (1) |
|
|
251 | (4) |
|
|
255 | (4) |
|
An informal characterization |
|
|
256 | (1) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
259 | (3) |
|
|
262 | (7) |
|
|
269 | (1) |
|
Where do we go from here? |
|
|
269 | (1) |
|
|
270 | (3) |
Epilogue |
|
273 | (2) |
References |
|
275 | (6) |
Index |
|
281 | |