Muutke küpsiste eelistusi

E-raamat: Logistic Regression: From Introductory to Advanced Concepts and Applications

  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Apr-2009
  • Kirjastus: SAGE Publications Inc
  • Keel: eng
  • ISBN-13: 9781483351421
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 116,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Apr-2009
  • Kirjastus: SAGE Publications Inc
  • Keel: eng
  • ISBN-13: 9781483351421
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this text, author Scott Menard provides coverage of not only the basic logistic regression model but also advanced topics found in no other logistic regression text. The book keeps mathematical notation to a minimum, making it accessible to those with more limited statistics backgrounds, while including advanced topics of interest to more statistically sophisticated readers. Not dependent on any one software package, the book discusses limitations to existing software packages and ways to overcome them.

Key Features

  • Examines the logistic regression model in detail
  • Illustrates concepts with applied examples to help readers understand how concepts are translated into the logistic regression model
  • Helps readers make decisions about the criteria for evaluating logistic regression models through detailed coverage of how to assess overall models and individual predictors for categorical dependent variables
  • Offers unique coverage of path analysis with logistic regression that shows readers how to examine both direct and indirect effects using logistic regression analysis
  • Applies logistic regression analysis to longitudinal panel data, helping students understand the issues in measuring change with dichotomous, nominal, and ordinal dependent variables
  • Shows readers how multilevel change models with logistic regression are different from multilevel growth curve models for continuous interval or ratio-scaled dependent variables

Logistic Regression is intended for courses such as Regression and Correlation, Intermediate/Advanced Statistics, and Quantitative Methods taught in departments throughout the behavioral, health, mathematical, and social sciences, including applied mathematics/statistics, biostatistics, criminology/criminal justice, education, political science, public health/epidemiology, psychology, and sociology.



Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally.
Preface vi
About the Author xiii
Introduction: Linear Regression and Logistic Regression
1(18)
Log-Linear Analysis, Logit Analysis, and Logistic Regression
19(23)
Quantitative Approaches to Model Fit and Explained Variation
42(21)
Prediction Tables and Qualitative Approaches to Explained Variation
63(20)
Logistic Regression Coefficients
83(22)
Model Specification, Variable Selection, and Model Building
105(20)
Logistic Regression Diagnostics and Problems of Inference
125(20)
Path Analysis With Logistic Regression (PALR)
145(26)
Polytomous Logistic Regression for Unordered Categorical Variables
171(22)
Ordinal Logistic Regression
193(29)
Clusters, Contexts, and Dependent Data: Logistic Regression for Clustered Sample Survey Data
222(23)
Conditional Logistic Regression Models for Related Samples
245(16)
Longitudinal Panel Analysis With Logistic Regression
261(31)
Logistic Regression for Historical and Developmental Change Models: Multilevel Logistic Regression and Discrete Time Event History Analysis
292(26)
Comparisons: Logistic Regression and Alternative Models
318(16)
Appendix A: Estimation for Logistic Regression Models 334(10)
Appendix B: Proofs Related to Indices of Predictive Efficiency 344(8)
Appendix C: Ordinal Measures of Explained Variation 352(6)
References 358(11)
Author Index 369(4)
Subject Index 373
Scott Menard is a Professor of Criminal Justice at Sam Houston State University and a research associate in the Institute of Behavioral Science at the University of Colorado, Boulder. He received his A.B. at Cornell University and his Ph.D. at the University of Colorado, Boulder, both in Sociology. His interests include quantitative methods and statistics, life course criminology, substance abuse, and criminal victimization. His publications include Longitudinal Research (second edition Sage 2002), Applied Logistic Regression Analysis (second edition Sage 2002), Good Kids from Bad Neighborhoods (Cambridge University Press 2006, with Delbert S. Elliott, Bruce Rankin, Amanda Elliott, William Julius Wilson, and David Huizinga), Youth Gangs (Charles C. Thomas 2006, with Robert J. Franzese and Herbert C. Covey), and the Handbook of Longitudinal Research (Elsevier 2008), as well as other books and journal articles in the areas of criminology, delinquency, population studies, and statistics.