Muutke küpsiste eelistusi

E-raamat: Loop-shaping Robust Control

  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Jun-2013
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118574898
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Jun-2013
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118574898
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The loop-shaping approach consists of obtaining a specification in relation to the open loop of the control from specifications regarding various closed loop transfers, because it is easier to work on a single transfer (in addition to the open loop) than on a multitude of transfers (various loopings such as set point/error, disturbance/error, disturbance/control, etc.). The simplicity and flexibility of the approach make it very well adapted to the industrial context. This book presents the loop-shaping approach in its entirety, starting with the declension of high-level specifications into a loop-shaping specification. It then shows how it is possible to fully integrate this approach for the calculation of robust and efficient correctors with the help of existing techniques, which have already been industrially tried and tested, such as H-infinity synthesis. The concept of a gap metric (or distance between models) is also presented along with its connection with the prime factors of a set of systems shaping a ball of models, as well as its connections with robust synthesis by loop-shaping, in order to calculate efficient and robust correctors. As H-infinity loop-shaping is often demanding in terms of the order of correctors, the author also looks at loop-shaping synthesis under an ordering constraint. Two further promising lines of research are presented, one using stochastic optimization, and the other non-smooth optimization. Finally, the book introduces the concept of correction with two degrees of freedom via the formalism of prime factorization. Avenues for future work are also opened up by the author as he discusses the main drawbacks to loop-shaping synthesis, and how these issues can be solved using modern optimization techniques in an increasingly competitive industrial context, in accordance with ever more complex sets of functional specifications, associated with increasingly broad conditions of usage.

Contents

Introduction 1. The Loop-shaping Approach 2. Loop-shaping H-infinity Synthesis 3. Two Degrees-of-Freedom Controllers 4. Extensions and Optimizations Appendix 1. Demonstrative Elements on the Optimization of Robust Stabilization with Order Constraint Appendix 2. Establishment of Real LMIs for the Quasi-Convex Problem of Optimization of the Weighting Functions





About the Authors

Philippe Feyel is an R&D Engineer for the high-tech company Sagem Défense Sécurité, part of the defence and security business of the SAFRAN group, in Paris, France.
Introduction ix
Chapter 1 The Loop-shaping Approach
1(32)
1.1 Principle of the method
1(13)
1.1.1 Introduction
1(1)
1.1.2 Sensitivity functions
1(4)
1.1.3 Declination of performance objectives
5(3)
1.1.4 Declination of the robustness objectives
8(6)
1.2 Generalized phase and gain margins
14(3)
1.2.1 Phase and gain margins at the model's output
14(2)
1.2.2 Phase and gain margins at the model's input
16(1)
1.3 Limitations inherent to bandwidth
17(1)
1.4 Examples
18(12)
1.4.1 Example 1: sinusoidal disturbance rejection
18(2)
1.4.2 Example 2: reference tracking and friction rejection
20(5)
1.4.3 Example 3: issue of flexible modes and high-frequency disturbances
25(4)
1.4.4 Example 4: stability robustness in relation to system uncertainties
29(1)
1.5 Conclusion
30(3)
Chapter 2 Loop-shaping H∞ Synthesis
33(102)
2.1 The formalism of coprime factorizations
33(9)
2.1.1 Definitions
33(2)
2.1.2 Practical calculation of normalized coprime factorizations
35(1)
2.1.3 Reconstruction of a transfer function from its coprime factors
36(1)
2.1.4 Set of stabilizing controllers -- Youla parameterization of stabilizing controllers
37(5)
2.2 Robustness of normalized coprime factor plant descriptions
42(12)
2.2.1 Taking account of modeling uncertainties
42(1)
2.2.2 Stability robustness for a coprime factor plant description
43(3)
2.2.3 Property of the equivalent "weighted mixed sensitivity" form
46(6)
2.2.4 Expression of the synthesis criterion in "4-blocks" equivalent form
52(2)
2.3 Explicit solution of the problem of robust stabilization of coprime factor plant descriptions
54(23)
2.3.1 Expression of the problem by the Youla parameterization
54(3)
2.3.2 Explicit resolution of the robust stabilization problem
57(20)
2.4 Robustness and υ-gap
77(5)
2.4.1 υ-gap and ball of plants
77(2)
2.4.2 Robustness results associated with the υ-gap
79(3)
2.5 Loop-shaping synthesis approach
82(38)
2.5.1 Motivation
82(1)
2.5.2 Loop-shaping H∞ synthesis
83(6)
2.5.3 Associated fundamental robustness result
89(1)
2.5.4 Phase margin and gain margin
89(1)
2.5.5 4-blocks interpretation of the method
90(2)
2.5.6 Practical implementation
92(8)
2.5.7 Examples of implementation
100(20)
2.6 Discrete approach
120(15)
2.6.1 Motivations
120(1)
2.6.2 Discrete approach to loop-shaping H∞ synthesis
121(6)
2.6.3 Example of implementation
127(8)
Chapter 3 Two Degrees-of-Freedom Controllers
135(52)
3.1 Principle
135(8)
3.1.1 Reference tracking
135(6)
3.1.2 Parameterization of 2-d.o.f. controllers
141(2)
3.2 Two-step approach
143(13)
3.2.1 General formulation
143(2)
3.2.2 Simplification of the problem by the Youla parameterization
145(5)
3.2.3 Extension
150(2)
3.2.4 Setting of the weighting functions
152(2)
3.2.5 Associated performance robustness result
154(2)
3.3 One-step approach
156(9)
3.3.1 General formulation
156(2)
3.3.2 Expression of the problem by Youla parameterization
158(3)
3.3.3 Associated performance robustness result
161(2)
3.3.4 Connection between the approach and loop-shaping synthesis
163(2)
3.4 Comparison of the two approaches
165(1)
3.5 Example
166(8)
3.5.1 Optimization of an existing controller (continued)-scanning
166(8)
3.6 Compensation for a measurable disturbance at the model's output
174(13)
3.6.1 Principle
174(5)
3.6.2 Example
179(8)
Chapter 4 Extensions and Optimizations
187(58)
4.1 Introduction
187(1)
4.2 Fixed-order synthesis
188(32)
4.2.1 Fixed-order robust stabilization of a coprime factor plant description
188(9)
4.2.2 Optimization of the order of the final controller
197(17)
4.2.3 Example: fixed-order robust multivariable synthesis
214(6)
4.3 Optimal setting of the weighting functions
220(22)
4.3.1 Weight setting on the basis of a frequency specification
220(7)
4.3.2 Optimal weight tuning using stochastic optimization and metaheuristics
227(15)
4.4 Towards a new approach to loop-shaping fixed-order controller synthesis, etc
242(3)
4.4.1 Taking account of objectives of stability robustness
243(1)
4.4.2 Taking account of objectives of performance robustness
244(1)
Appendices 245(2)
Appendix 1 247(4)
Appendix 2 251(4)
Bibliography 255(4)
Index 259
Philippe Feyel is research and development engineer at Sagem Defense and Security, Paris, France.