Muutke küpsiste eelistusi

E-raamat: Lyapunov-Based Control of Mechanical Systems

  • Formaat: PDF+DRM
  • Sari: Control Engineering
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461213529
  • Formaat - PDF+DRM
  • Hind: 108,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Control Engineering
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461213529

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The design of nonlinear controllers for mechanical systems has been an ex­ tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the­ oreticians. On the other hand, recent technological advances have produced many real-world engineering applications that require the automatic con­ trol of mechanical systems. the mechanism for de­ Often, Lyapunov-based techniques are utilized as veloping different nonlinear control structures for mechanical systems. The allure of the Lyapunov-based framework for mechanical system control de­ sign can most likely be assigned to the fact that Lyapunov function candi­ dates can often be crafted from physical insight into the mechanics of the system. That is, despite the nonlinearities, couplings, and/or the flexible effects associated with the system, Lyapunov-based techniques can often be used to analyze the stability of the closed-loop system by using an energy­ like function as the Lyapunov function candidate. In practice, the design procedure often tends to be an iterative process that results in the death of many trees. That is, the controller and energy-like function are often constructed in concert to foster an advantageous stability property and/or robustness property. Fortunately, over the last 15 years, many system the­ ory and control researchers have labored in this area to produce various design tools that can be applied in a variety of situations.

Arvustused

"This book describes how Lyapunov-based techniques can be used to design nonlinear controllers for mechanical systems. The text is well written, easy to read, and many examples clarify the theoretical discussions. The book can be useful both to newcomers in the field and to graduate students and researchers in the area of control applications."



Zentralblatt Math



"This book deals with Lyapunov-based control techniques. It gives a rather complete and at the same time technically accurate overview of the modern state of the art in control methods using Lyapunov functions. The reviewed material is intended for an audience of researchers and graduate students in the area of control applications."



Mathematical Reviews

Muu info

Springer Book Archives
1 Introduction.- 1.1 Lyapunov-Based Control.- 1.2 Rigid Mechanical
Systems.- 1.3 Flexible Mechanical Systems.- 1.4 Real-Time Control
Implementation.- 2 Control Techniques for Friction Compensation.- 2.1
Introduction.- 2.2 Reduced-Order Friction Model.- 2.3 Control Designs for
Reduced-Order Model.- 2.4 Full-Order Friction Model.- 2.5 Control Designs for
Full-Order Model.- 2.6 Notes.- 3 Full-State Feedback Tracking Controllers.-
3.1 Introduction.- 3.2 System Model.- 3.3 Problem Statement.- 3.4 Standard
Adaptive Control.- 3.5 Desired Trajectory-Based Adaptive Control.- 3.6
Control/Adaptation Law Modularity.- 3.7 Notes.- 4 Output Feedback Tracking
Controllers.- 4.1 Introduction.- 4.2 Problem Statement.- 4.3 Model-Based
Observer/Control.- 4.4 Linear Filter-Based Adaptive Control.- 4.5 Nonlinear
Filter-Based Adaptive Control.- 4.6 Notes.- 5 Strings and Cables.- 5.1
Introduction.- 5.2 Actuator-String System.- 5.3 Cable System.- 5.4 Notes.- 6
Cantilevered Beams.- 6.1 Introduction.- 6.2 Euler-Bernoulli Beam.- 6.3
Timoshenko Beam.- 6.4 Notes.- 7 Boundary Control Applications.- 7.1
Introduction.- 7.2 Axially Moving String System.- 7.3 Flexible Link Robot
Arm.- 7.4 Flexible Rotor System.- 7.5 Notes.- Appendices.- A Mathematical
Background.- References.- B Bounds for General Rigid Mechanical System.-
References.- C Bounds for the Puma Robot.- References.- D Control Programs.-
D.1 DCAL Controller.- D.2 Flexible Rotor.