Muutke küpsiste eelistusi

E-raamat: Lyapunov-Based Control of Robotic Systems

, , (Clemson University, South Carolina, USA),
  • Formaat: 389 pages
  • Ilmumisaeg: 17-Dec-2009
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420006278
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 389 pages
  • Ilmumisaeg: 17-Dec-2009
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420006278
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Written by Behal (U. of Florida, US), Dixon (U. of Florida, US), Dawson (Clemson U., US) and Xian (Tianjin U., China), this work describes frameworks for setting up nonlinear control design problems pertinent to robotic perception, interaction, and manipulation of environments, with the focus framework being Lyapunov-based nonlinear control design. Following an introduction to the history of robotics and the Lyapunov-based control philosophy, chapters cover the standard control design tools available for robotic systems within the context of the Lyapunov-based framework; problems in visual servoing control, including robot end-effector tracking a prerecorded time-varying reference trajectory under visual feedback from a monocular camera, estimating the shape of a continuum robot, tracking and regulation problems of wheeled mobile robots, and the classic Structure from Motion problem. They also discuss problems of path planning and control for manipulator arms and wheeled mobile robots, both when obstacle locations are known a priori and when they need to be determined in real time using fixed or in-hand vision as an active feedback element. They further address the emerging research area of human-machine interaction in the context of smart exercise machines, steer-by-wire control of vehicles, problems of force and motion in remote teleoperator systems, and rehabilitation robots for safely directing user limb motions. Annotation ©2010 Book News, Inc., Portland, OR (booknews.com)
Preface xi
Introduction
1(8)
History of Robotics
1(2)
Lyapunov-Based Control Philosophy
3(2)
The Real-Time Computer Revolution
5(4)
References
7(2)
Robot Control
9(28)
Introduction
9(1)
Modeling and Control Objective
10(2)
Robot Manipulator Model and Properties
10(2)
Control Objective
12(1)
Computed Torque Control Approaches
12(5)
PD Control
12(3)
Robust Control
15(1)
Sliding Mode Control
16(1)
Adaptive Control Design
17(11)
Direct Adaptive Control
18(6)
Neural Network-Based Control
24(4)
Task-Space Control and Redundancy
28(9)
Kinematic Model
29(1)
Control Objective and Error System Formulation
30(2)
Computed Torque Control Development and Stability Analysis
32(1)
Adaptive Control Extension
33(1)
References
34(3)
Vision-Based Systems
37(104)
Introduction
37(4)
Monocular Image-Based Geometry
41(10)
Fixed-Camera Geometry
41(3)
Euclidean Reconstruction
44(2)
Camera-in-Hand Geometry
46(1)
Homography Calculation
47(3)
Virtual Parallax Method
50(1)
Visual Servo Tracking
51(14)
Control Objective
51(3)
Control Formulation
54(2)
Stability Analysis
56(1)
Camera-in-Hand Extension
57(1)
Simulation Results
58(7)
Continuum Robots
65(13)
Continuum Robot Kinematics
69(3)
Joint Variables Extraction
72(2)
Task-Space Kinematic Controller
74(2)
Simulations and Discussion
76(2)
Mobile Robot Regulation and Tracking
78(29)
Regulation Control
79(14)
Tracking Control
93(14)
Structure from Motion
107(18)
Object Kinematics
107(1)
Identification of Velocity
108(5)
Camera-in-Hand Extension
113(6)
Simulations and Experimental Results
119(6)
Notes
125(16)
References
129(12)
Path Planning and Control
141(92)
Introduction
141(3)
Velocity Field and Navigation Function Control for Manipulators
144(19)
System Model
145(1)
Adaptive VFC Control Objective
146(4)
Navigation Function Control Extension
150(4)
Experimental Verification
154(9)
Velocity Field and Navigation Function Control for WMRs
163(18)
Kinematic Model
163(1)
WMR Velocity Field Control
164(10)
WMR Navigation Function Control Objective
174(7)
Vision Navigation
181(28)
Geometric Modeling
184(3)
Image-Based Path Planning
187(4)
Tracking Control Development
191(3)
Simulation Results
194(15)
Optimal Navigation and Obstacle Avoidance
209(13)
Illustrative Example: Planar PBVS
213(5)
6D Visual Servoing: Camera-in-Hand
218(4)
Background and Notes
222(11)
References
225(8)
Human Machine Interaction
233(93)
Introduction
233(2)
Exercise Machine
235(14)
Exercise Machine Dynamics
236(1)
Control Design with Measurable User Input
237(2)
Desired Trajectory Generator
239(2)
Control Design without Measurable User Input
241(5)
Desired Trajectory Generator
246(1)
Experimental Results and Discussion
247(2)
Steer-by-Wire
249(25)
Control Problem Statement
254(1)
Dynamic Model Development
255(3)
Control Development
258(1)
Stability Analysis
259(1)
Elimination of Torque Measurements: Extension
260(5)
Numerical Simulation Results
265(6)
Experimental Results
271(3)
Robot Teleoperation
274(21)
System Model
277(1)
MIF Control Development
278(6)
UMIF Control Development
284(11)
Rehabilitation Robot
295(22)
Robot Dynamics
296(1)
Path Planning and Desired Trajectory Generator
297(5)
Control Problem Formulation
302(5)
Simulation Results
307(10)
Background and Notes
317(9)
References
318(8)
Appendices
326(1)
A Mathematical Background
327(8)
References
334(1)
B Supplementary Lemmas and Expressions
335(38)
Chapter 3 Lemmas
335(4)
Open-Loop Rotation Error System
335(2)
Open-Loop Translation Error System
337(1)
Persistence of Excitation Proof
337(2)
Chapter 4 Lemmas and Auxiliary Expressions
339(8)
Experimental Velocity Field Selection
339(1)
GUB Lemma
340(2)
Boundedness of θd (t)
342(2)
Open-Loop Dynamics for γ (t)
344(1)
Measurable Expression for Lγd (t)
344(1)
Development of an Image Space NF and Its Gradient
345(2)
Global Minimum
347(1)
Chapter 5 Lemmas and Auxiliary Expressions
347(26)
Numerical Extremum Generation
347(2)
Proof of Lemma 5.1
349(1)
Definitions from Section 5.3.2
350(1)
Upperbound for Va1 (t)
350(1)
Upper Bound Development for MIF Analysis
351(3)
Teleoperator - Proof of MIF Controller Stability
354(4)
Teleoperator - Proof of MIF Passivity
358(1)
Teleoperator - Proof of UMIF Desired Trajectory Boundedness
359(4)
Teleoperator - Proof of UMIF Controller Stability
363(3)
Teleoperator - Proof of UMIF Passivity
366(1)
Proof of Bound on N
367(2)
Calculation of Region of Attraction
369(1)
References
370(3)
Index 373
Aman Behal is an assistant professor in the School of Electrical Engineering and Computer Science and the NanoScience Technology Center at the University of Central Florida.

Warren Dixon is an associate professor and director of the Nonlinear Controls and Robotics group in the Department of Mechanical and Aerospace Engineering at the University of Florida.

Darren M. Dawson is McQueen Quattlebaum Professor and chair of the Holcombe Department of Electrical and Computer Engineering at Clemson University.

Bin Xian is a professor in the School of Electrical Engineering and Automation at Tianjin University.