Muutke küpsiste eelistusi

E-raamat: Machine Learning Applications in Subsurface Energy Resource Management: State of the Art and Future Prognosis

Edited by
  • Formaat: 378 pages
  • Ilmumisaeg: 27-Dec-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000823875
  • Formaat - PDF+DRM
  • Hind: 149,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 378 pages
  • Ilmumisaeg: 27-Dec-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000823875

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The utilization of machine learning (ML) techniques to understand hidden patterns and build data-driven predictive models from complex multivariate datasets is rapidly increasing in many applied science and engineering disciplines, including geo-energy. Motivated by these developments, Machine Learning Applications in Subsurface Energy Resource Management presents a current snapshot of the state of the art and future outlook for ML applications to manage subsurface energy resources (e.g., oil and gas, geologic carbon sequestration, and geothermal energy).











Covers ML applications across multiple application domains (reservoir characterization, drilling, production, reservoir modeling, and predictive maintenance)





Offers a variety of perspectives from authors representing operating companies, universities, and research organizations





Provides an array of case studies illustrating the latest applications of several ML techniques





Includes a literature review and future outlook for each application domain

This book is targeted at practicing petroleum engineers or geoscientists interested in developing a broad understanding of ML applications across several subsurface domains. It is also aimed as a supplementary reading for graduate-level courses and will also appeal to professionals and researchers working with hydrogeology and nuclear waste disposal.
Preface xi
Acknowledgments xiii
Editor xv
Contributors xvii
SECTION I Introduction
Chapter 1 Machine Learning Applications in Subsurface Energy Resource Management: State of the Art
3(8)
Srikanta Mishra
Chapter 2 Solving Problems with Data Science
11(22)
Jared Schuetter
SECTION II Reservoir Characterization Applications
Chapter 3 Machine Learning-Aided Characterization Using Geophysical Data Modalities
33(12)
Vikram Jayaram
Tao Zhao
Chapter 4 Machine Learning to Discover, Characterize, and Produce Geothermal Energy
45(28)
V. Vesselinov
M. Mudunuru
B. Ahmmed
S. Karra
D. O'Malley
SECTION III Drilling Operations Applications
Chapter 5 Real-Time Drilling and Completion Analytics: From Cloud Computing to Edge Computing and Their Machine Learning Applications
73(18)
Dingzhou Cao
Jingshuang Xue
Yu Sun
Chapter 6 Using Machine Learning to Improve Drilling of Unconventional Resources
91(22)
Ruizhi Zhong
SECTION IV Production Data Analysis Applications
Chapter 7 Machine Learning Assisted Production Data Filtering and Decline Curve Analysis in Unconventional Plays
113(30)
David Fulford
Chapter 8 Hybrid Data-Driven and Physics-Informed Reservoir Modeling for Unconventional Reservoirs
143(22)
Sathish Sankaran
Hardik Zalavadia
Chapter 9 Role of Analytics in Extracting Data-Driven Models from Reservoir Surveillance
165(20)
Raj Banerjee
Chapter 10 Machine Learning Assisted Forecasting of Reservoir Performance
185(24)
Emre Artun
SECTION V Reservoir Modeling Applications
Chapter 11 An Efficient Deep Learning Based Workflow Incorporating a Reduced Physics Model for Drainage Volume Visualization in Unconventional Reservoirs
209(24)
Tsubasa Onishi
Hongquan Chen
Akhil Datta-Gupta
Srikanta Mishra
Chapter 12 Reservoir Modeling Using Fast Predictive Machine Learning Algorithms for Geological Carbon Storage
233(18)
Seyyed Hosseini
Richard Larson
Parisa Shokouhi
Vikas Kumar
Sumedha Prathipati
Dan Kifer
Jonathan Garcez
Luis Ayala
Michael Riedl
Brandon Hill
Sanjay Tamrakar
Jared Schuetter
Srikanta Mishra
Chapter 13 Physics-Embedded Machine Learning for Modeling and Optimization of Mature Fields
251(20)
Pallav Sarma
Chapter 14 Deep Neural Network Surrogate Flow Models for History Matching and Uncertainty Quantification
271(20)
Su Jiang
Louis Durlofsky
Chapter 15 Generalizable Field Development Optimization Using Deep Reinforcement Learning with Field Examples
291(22)
Jincong He
Yusuf Nasir
Shusei Tanaka
SECTION VI Predictive Maintenance Applications
Chapter 16 Case Studies Involving Machine Learning for Predictive Maintenance in Oil and Gas Production Operations
313(24)
Luigi Saputelli
Carlos Palacios
Cesar Bravo
Chapter 17 Machine Learning for Multiphase Flow Metering
337(18)
Patrick Bangert
SECTION VII Summary and Future Outlook
Chapter 18 Machine Learning Applications in Subsurface Energy Resource Management: Future Prognosis
355(4)
Srikanta Mishra
Index 359
Dr. Srikanta Mishra is Senior Research Leader and Technical Director for Geo-energy Resource Modeling and Analytics at Battelle Memorial Institute, the worlds largest independent contract R&D organization. He is nationally and internationally recognized for his expertise in developing and communicating physics-based and data-driven predictive models for subsurface resource management. Dr. Mishra currently serves as the Technical Lead of the SMART (Science Informed Machine Learning for Accelerating Real-time Decisions for Subsurface applications) initiative, organized by the US Department of Energy and involving multiple national laboratories and universities. He was a recipient of the Society of Petroleum Engineers (SPE) Distinguished Member Award in 2021, and also served as a Global Distinguished Lecturer on Big Data Analytics for SPE during 201819 and received the 2022 SPE Data Science and Engineering Analytics Award.