Muutke küpsiste eelistusi

E-raamat: Machine Learning Approaches in Financial Analytics

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 197,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book addresses the growing need for a comprehensive guide to the application of machine learning in financial analytics. It offers a valuable resource for both beginners and experienced professionals in finance and data science by covering the theoretical foundations, practical implementations, ethical considerations, and future trends in the field. It bridges the gap between theory and practice, providing readers with the tools and knowledge they need to leverage the power of machine learning in the financial sector responsibly.

.- Part I: Foundations.



.
Chapter 1: Introduction to Optimal Execution.



.- Part II: Tools and techniques.



.
Chapter 2: Python Stack for Design and Visualization in Financial
Engineering.



.
Chapter 3: Neurodynamic approaches to cardinality-constrained portfolio
optimization.



.
Chapter 4: Fully Homomorphic Encrypted Wavelet Neural Network for
Privacy-Preserving Bankruptcy Prediction in Banks.



.
Chapter 5: Tools and Measurement Criteria of Ethical Finance through
Computational Finance.



.
Chapter 6: Data Mining Techniques for Predicting the Non-Performing Assets
(NPA) of Banks in India.



.
Chapter 7: Multiobjective optimization of mean-variance-downside-risk
portfolio selection models.



.- Part III: Risk assessment and ethical considerations.



.
Chapter 8: Bankruptcy Forecasting Of Indian Manufacturing Companies Post
Ibc Using Machine Learning Techniques.



.
Chapter 9: Ensemble Deep Reinforcement Learning for Financial Trading.
Part IV: Real-world Applications.



.
Chapter 10: Bibliometric Analysis of Digital Financial Reporting.



.
Chapter 11: The Quest for Financing Environmental Sustainability in
Emerging Nations: Can Internet Access and Financial Technology be Crucial?



.
Chapter 12: A comprehensive review of Bitcoins energy consumption and its
environmental implications, etc.