Muutke küpsiste eelistusi

E-raamat: Machine Learning in Asset Pricing

  • Formaat: 160 pages
  • Sari: Princeton Lectures in Finance
  • Ilmumisaeg: 11-May-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691218717
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 49,73 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 160 pages
  • Sari: Princeton Lectures in Finance
  • Ilmumisaeg: 11-May-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691218717
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing

Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing.

Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets.

Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.

Arvustused

"The book shows the advances Machine Learning offers for academic research. The book certainly makes a difference in the exploding literature on Machine Learning and I highly recommend it to all academics in finance."---Thorsten Hens, Journal of Economics

Preface ix
Chapter 1 Introduction
1(10)
Chapter 2 Supervised Learning
11(20)
Chapter 3 Supervised Learning in Asset Pricing
31(33)
Chapter 4 ML in Cross-Sectional Asset Pricing
64(29)
Chapter 5 ML as Model of Investor Belief Formation
93(26)
Chapter 6 A Research Agenda
119(16)
Bibliography 135(6)
Index 141
Stefan Nagel is the Fama Family Professor of Finance at the University of Chicago, Booth School of Business. He is the executive editor of the Journal of Finance, a research associate at the National Bureau of Economic Research, and a research fellow at both the Centre for Economic Policy Research in London and the CESIfo in Munich. Twitter @ProfStefanNagel