About the Author |
|
xiii | |
About the Technical Reviewer |
|
xv | |
Introduction |
|
xvii | |
|
|
1 | (54) |
|
Chapter 1 Three Lines of Defense |
|
|
3 | (10) |
|
|
3 | (2) |
|
The Three Lines of Defense Model |
|
|
5 | (2) |
|
Risk Management Complexities |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (2) |
|
Chapter 2 Common Audit Challenges |
|
|
13 | (20) |
|
|
14 | (2) |
|
|
16 | (3) |
|
|
19 | (2) |
|
Structured vs. Unstructured Data |
|
|
21 | (2) |
|
|
23 | (5) |
|
|
28 | (1) |
|
|
29 | (2) |
|
|
31 | (2) |
|
Chapter 3 Existing Solutions |
|
|
33 | (10) |
|
|
33 | (1) |
|
|
34 | (1) |
|
Fit-for-Purpose Technologies |
|
|
35 | (3) |
|
|
38 | (3) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (6) |
|
|
44 | (2) |
|
Data Analytics Audit Applications |
|
|
46 | (1) |
|
Data Analytics vs. Data Science |
|
|
47 | (1) |
|
|
48 | (1) |
|
Chapter 5 Analytics Structure and Environment |
|
|
49 | (6) |
|
Analytics Organization Structure |
|
|
50 | (1) |
|
|
51 | (1) |
|
The Role of Senior Leaders |
|
|
52 | (1) |
|
|
53 | (2) |
|
Part II Understanding Artificial Intelligence |
|
|
55 | (82) |
|
Chapter 6 Introduction to AI, Data Science, and Machine Learning |
|
|
57 | (16) |
|
|
57 | (3) |
|
Components of an AI System |
|
|
60 | (3) |
|
CRISP-DM for Data Science |
|
|
63 | (4) |
|
|
67 | (1) |
|
Payment Fraud/Anomaly Detection |
|
|
68 | (4) |
|
|
72 | (1) |
|
Chapter 7 Myths and Misconceptions |
|
|
73 | (4) |
|
Myth #1 You Need an Advanced Degree to Be a Data Scientist |
|
|
74 | (1) |
|
Myth #2 Correlation Implies Causation |
|
|
74 | (2) |
|
Myth #3 The Model Building Is the Most Critical Step |
|
|
76 | (1) |
|
|
76 | (1) |
|
Chapter 8 Trust, but Verify |
|
|
77 | (12) |
|
What Is Trust, but Verify? |
|
|
77 | (3) |
|
Why Is It Important to Verify? |
|
|
80 | (3) |
|
|
83 | (4) |
|
|
87 | (2) |
|
Chapter 9 Machine Learning Fundamentals |
|
|
89 | (28) |
|
|
89 | (15) |
|
|
90 | (1) |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
100 | (3) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (8) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (2) |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
Principal Component Analysis |
|
|
110 | (1) |
|
|
111 | (1) |
|
Overfitting, Underfitting, and Feature Extraction |
|
|
112 | (4) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
117 | (6) |
|
Introduction to Data Lakes |
|
|
117 | (2) |
|
|
119 | (1) |
|
Role as Analytics Enabler |
|
|
119 | (1) |
|
|
120 | (2) |
|
|
122 | (1) |
|
Chapter 11 Leveraging the Cloud |
|
|
123 | (8) |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
130 | (1) |
|
Chapter 12 SCADA and Operational Technology |
|
|
131 | (6) |
|
Fourth Industrial Revolution |
|
|
131 | (2) |
|
|
133 | (1) |
|
Applying AI to SCADA Auditing |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (48) |
|
Chapter 13 What Is Storytelling? |
|
|
139 | (8) |
|
|
139 | (3) |
|
|
142 | (2) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (2) |
|
Chapter 14 Why Storytelling? |
|
|
147 | (4) |
|
|
147 | (1) |
|
General Guidelines of Good Storytelling |
|
|
148 | (1) |
|
|
148 | (2) |
|
|
150 | (1) |
|
Chapter 15 When to Use Storytelling? |
|
|
151 | (4) |
|
Use Stories to Inspire or Motivate an Action |
|
|
151 | (1) |
|
When Can We Use Storytelling? |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
Chapter 16 Types of Visualizations |
|
|
155 | (14) |
|
|
155 | (8) |
|
|
163 | (4) |
|
|
167 | (1) |
|
|
167 | (2) |
|
Chapter 17 Effective Stories |
|
|
169 | (4) |
|
Case Study: "The Best Stats You've Ever Seen" |
|
|
169 | (1) |
|
Case Study: "U.S. GUN KILLINGS IN 2018" |
|
|
170 | (1) |
|
Case Study: "Numbers of Different Magnitudes" |
|
|
171 | (1) |
|
Recap of Effective Storytelling Elements |
|
|
172 | (1) |
|
|
172 | (1) |
|
Chapter 18 Storytelling Tools |
|
|
173 | (8) |
|
|
173 | (1) |
|
|
174 | (5) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
176 | (3) |
|
|
179 | (2) |
|
Chapter 19 Storytelling in Auditing |
|
|
181 | (4) |
|
|
181 | (1) |
|
Communication of Findings |
|
|
181 | (1) |
|
|
182 | (1) |
|
Clarify Business Knowledge |
|
|
183 | (1) |
|
|
183 | (2) |
|
Part IV Implementation Recipes |
|
|
185 | (52) |
|
Chapter 20 How to Use the Recipes |
|
|
187 | (6) |
|
|
187 | (1) |
|
|
188 | (1) |
|
Where Can You Find the Python Code? |
|
|
188 | (1) |
|
Implementation Considerations |
|
|
189 | (2) |
|
|
191 | (2) |
|
Chapter 21 Fraud and Anomaly Detection |
|
|
193 | (10) |
|
The Dish: A Fraud and Anomaly Detection System |
|
|
193 | (1) |
|
|
194 | (2) |
|
|
196 | (5) |
|
|
196 | (1) |
|
Step 2 Exploratory Data Analysis |
|
|
196 | (2) |
|
Step 3 Apply Interquartile Range (IQR) Method |
|
|
198 | (1) |
|
Step 4 Perform Supervised Learning |
|
|
199 | (1) |
|
Step 5 Perform Unsupervised Learning Analysis |
|
|
199 | (1) |
|
Step 6 Review Exceptions with Additional Data |
|
|
200 | (1) |
|
Step 7 Re-evaluate the Models |
|
|
201 | (1) |
|
|
201 | (2) |
|
Chapter 22 Access Management |
|
|
203 | (6) |
|
The Dish: ERP Access Management Audit |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
204 | (3) |
|
|
204 | (1) |
|
Step 2 Exploratory Data Analysis |
|
|
205 | (1) |
|
Step 3 Scatter Plot of ERP Access |
|
|
205 | (1) |
|
Step 4 Review Exceptions with Additional Data |
|
|
206 | (1) |
|
Step 5 Reperform the Analysis |
|
|
207 | (1) |
|
|
207 | (2) |
|
Chapter 23 Project Management |
|
|
209 | (6) |
|
The Dish: Project Portfolio Analysis |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
210 | (4) |
|
|
211 | (1) |
|
Step 2 Exploratory Data Analysis |
|
|
211 | (1) |
|
Step 3 Perform Random Forest Classification |
|
|
211 | (2) |
|
Step 4 Review Feature Importance |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
Chapter 24 Data Exploration |
|
|
215 | (4) |
|
The Dish: Understanding the Data Through Exploration |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
216 | (2) |
|
|
216 | (1) |
|
Step 2 Exploratory Data Analysis |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
218 | (1) |
|
Chapter 25 Vendor Duplicate Payments |
|
|
219 | (4) |
|
The Dish: Vendor Duplicate Payments Analysis |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
220 | (1) |
|
|
220 | (1) |
|
Step 2 Perform K-NN Algorithm |
|
|
220 | (1) |
|
Step 3 Review Exceptions with Additional Data |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (2) |
|
|
223 | (6) |
|
The Dish: CAATs Analysis Using ML |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (2) |
|
|
225 | (1) |
|
Step 2 Exploratory Data Analysis |
|
|
225 | (1) |
|
Step 3 K-Means Clustering |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (2) |
|
|
229 | (6) |
|
The Dish: NLP Log Analysis |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (3) |
|
|
230 | (1) |
|
Step 2 Exploratory Data Analysis |
|
|
231 | (1) |
|
Step 3 Perform Topic Modeling |
|
|
232 | (1) |
|
Step 4 Reperform the Analysis |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
233 | (2) |
|
Chapter 28 Concluding Remarks |
|
|
235 | (2) |
Index |
|
237 | |