About the Author |
|
xix | |
About the Technical Reviewer |
|
xxi | |
Acknowledgments |
|
xxiii | |
Introduction |
|
xxv | |
|
Chapter 1 Journey of Business Intelligence |
|
|
1 | (26) |
|
|
1 | (3) |
|
|
4 | (3) |
|
|
5 | (1) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (3) |
|
|
10 | (2) |
|
|
12 | (6) |
|
Customer Relationship Management |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
16 | (2) |
|
|
18 | (9) |
|
|
19 | (5) |
|
|
24 | (3) |
|
Chapter 2 Why Cognitive and Machine Learning? |
|
|
27 | (6) |
|
Artificial Intelligence (AI) and Machine Learning (ML) |
|
|
27 | (1) |
|
Why Artificial Intelligence and Machine Learning? |
|
|
28 | (2) |
|
|
30 | (3) |
|
Chapter 3 Artificial Intelligence---Basics |
|
|
33 | (18) |
|
|
33 | (7) |
|
Goals of Artificial Intelligence |
|
|
34 | (1) |
|
Components of Artificial Intelligence |
|
|
35 | (5) |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
43 | (1) |
|
Mixed Symbolic Approaches |
|
|
44 | (1) |
|
Agent-Oriented and Distributive Approaches |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (3) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (2) |
|
Artificial Neural Networks |
|
|
48 | (1) |
|
|
48 | (3) |
|
Chapter 4 Machine Learning---Basics |
|
|
51 | (14) |
|
|
51 | (4) |
|
|
55 | (2) |
|
|
55 | (1) |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
57 | (4) |
|
|
57 | (3) |
|
|
60 | (1) |
|
Decision Tree and Association Rule |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
Machine Learning vs. Statistics |
|
|
61 | (1) |
|
Business Use Case Example |
|
|
62 | (3) |
|
Chapter 5 Natural Language Processing |
|
|
65 | (10) |
|
|
65 | (1) |
|
Natural Language Processing---Overview |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
69 | (3) |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (2) |
|
Chapter 6 Predictive Analytics |
|
|
75 | (24) |
|
|
75 | (2) |
|
|
77 | (4) |
|
|
78 | (1) |
|
|
79 | (1) |
|
Avoid Personal or Sensitive Data |
|
|
80 | (1) |
|
|
81 | (1) |
|
Past, Current, and Future Value |
|
|
81 | (1) |
|
Consistent and Not a Liability |
|
|
81 | (1) |
|
Outdated or Out of Purpose |
|
|
82 | (1) |
|
Predictive Analytics---Process |
|
|
82 | (3) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (6) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (2) |
|
SAP HANA Predictive Analytics |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
Oracle Advanced Analytics |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
93 | (6) |
|
|
93 | (1) |
|
Marketing and Demand Management |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
97 | (2) |
|
Chapter 7 Cognitive Computing |
|
|
99 | (30) |
|
|
99 | (4) |
|
|
103 | (4) |
|
|
107 | (2) |
|
|
109 | (2) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (5) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
116 | (5) |
|
|
121 | (1) |
|
|
122 | (4) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (3) |
|
Chapter 8 Principles for Cognitive Systems |
|
|
129 | (34) |
|
|
129 | (10) |
|
Identify Problem Area or Need |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
Feasibility and Rescoping |
|
|
132 | (1) |
|
Identify Finer Requirements or Associations |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (2) |
|
Identify Validation Checks |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
Fix Defects or Deviations |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
Cognitive Design Principle |
|
|
139 | (7) |
|
Identify Problem Area or Need |
|
|
139 | (2) |
|
|
141 | (1) |
|
|
141 | (1) |
|
Feasibility and Rescoping |
|
|
141 | (1) |
|
Identify Finer Requirements or Associations |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (3) |
|
Identify Validation Checks |
|
|
145 | (1) |
|
|
146 | (1) |
|
Fix Defects or Deviations |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (2) |
|
|
148 | (1) |
|
Cognitive Knowledge Generation and Sources |
|
|
148 | (8) |
|
Language Capabilities (Natural Language Processing) |
|
|
150 | (1) |
|
Conversation or Communication Capabilities |
|
|
150 | (1) |
|
Connectivity with All Sources of Data |
|
|
151 | (1) |
|
Ability to Process All Types of Data |
|
|
151 | (1) |
|
Knowledge Generation Capability |
|
|
152 | (1) |
|
Recommendation Capabilities |
|
|
152 | (1) |
|
Knowledge Generation---Some Details |
|
|
152 | (4) |
|
|
156 | (2) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
Financial and Business Networks |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
158 | (1) |
|
Relation with Artificial Intelligence and Machine Learning |
|
|
159 | (2) |
|
|
161 | (2) |
|
Chapter 9 Parallel Evolving IT-BI Systems |
|
|
163 | (32) |
|
Where Do We Go from Here? |
|
|
163 | (1) |
|
IT and Business Relations Today |
|
|
164 | (6) |
|
|
165 | (1) |
|
Business & IT Relationship: Boundary |
|
|
166 | (4) |
|
IT and Business Relationship: Where Is It Heading? |
|
|
170 | (4) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
What Are Parallel Evolving IT-BI Systems? |
|
|
174 | (8) |
|
|
178 | (3) |
|
|
181 | (1) |
|
Properties of PEIB Framework |
|
|
182 | (7) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
Why Is This a Game Changer? |
|
|
190 | (1) |
|
|
191 | (2) |
|
|
193 | (2) |
|
Chapter 10 Transformation Roadmap |
|
|
195 | (38) |
|
|
195 | (3) |
|
|
195 | (2) |
|
|
197 | (1) |
|
Enterprise or Business Size |
|
|
197 | (1) |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
201 | (23) |
|
|
202 | (4) |
|
|
206 | (9) |
|
|
215 | (1) |
|
Knowledge and KPI Checklist |
|
|
216 | (8) |
|
|
224 | (4) |
|
|
225 | (1) |
|
|
226 | (1) |
|
Validation and User Feedback |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
A Holistic Transformation |
|
|
230 | (1) |
|
Cognitive in Manufacturing |
|
|
230 | (1) |
|
|
231 | (2) |
|
Chapter 11 Transformation Road Blockers |
|
|
233 | (28) |
|
|
234 | (2) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (6) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (2) |
|
|
242 | (2) |
|
Scope and Blueprint Alignment |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
244 | (5) |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
245 | (3) |
|
|
248 | (1) |
|
Maturity and Enrichment Plan |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (9) |
|
|
250 | (3) |
|
|
253 | (3) |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
258 | (3) |
|
Chapter 12 Self-Evolving Cognitive Business |
|
|
261 | (18) |
|
Conventional vs. Cognitive Self-Evolving Systems |
|
|
262 | (10) |
|
|
262 | (4) |
|
Mixing Areas for Decision |
|
|
266 | (1) |
|
|
267 | (2) |
|
Expansion and Integration Issues |
|
|
269 | (2) |
|
|
271 | (1) |
|
|
271 | (1) |
|
What Then Is Self-Evolving Business? |
|
|
272 | (1) |
|
Reality Check About Cognitive |
|
|
273 | (4) |
|
Is Cognitive for Everyone? |
|
|
274 | (1) |
|
|
275 | (1) |
|
Are All Vendors/Products Good? |
|
|
276 | (1) |
|
Self-Cognitive Capability? |
|
|
276 | (1) |
|
Is Cognitive Taking Jobs Away? |
|
|
277 | (1) |
|
|
277 | (2) |
|
|
279 | (20) |
|
Path Ahead: Implementing Organizations |
|
|
279 | (7) |
|
|
280 | (1) |
|
Transform People and Culture |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
Right Partner and Solution |
|
|
283 | (1) |
|
|
283 | (2) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
Path Ahead: IT Service and Product Companies |
|
|
286 | (7) |
|
|
287 | (1) |
|
|
288 | (2) |
|
Incubation and Inculcation |
|
|
290 | (1) |
|
|
290 | (1) |
|
Center of Excellence (COE) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
Skill Development and Maturity |
|
|
292 | (1) |
|
Path Ahead: IT Consultants |
|
|
293 | (4) |
|
|
294 | (2) |
|
|
296 | (1) |
|
|
297 | (2) |
Index |
|
299 | |