Muutke küpsiste eelistusi

E-raamat: Machine Learning and Data Mining Approaches to Climate Science: Proceedings of the 4th International Workshop on Climate Informatics

Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319172200
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319172200

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents innovative work in Climate Informatics, a new field that reflects the application of data mining methods to climate science, and shows where this new and fast growing field is headed. Given its interdisciplinary nature, Climate Informatics offers insights, tools and methods that are increasingly needed in order to understand the climate system, an aspect which in turn has become crucial because of the threat of climate change. There has been a veritable explosion in the amount of data produced by satellites, environmental sensors and climate models that monitor, measure and forecast the earth system. In order to meaningfully pursue knowledge discovery on the basis of such voluminous and diverse datasets, it is necessary to apply machine learning methods, and Climate Informatics lies at the intersection of machine learning and climate science. This book grew out of the fourth workshop on Climate Informatics held in Boulder, Colorado in Sep. 2014.

Part I Machine Learning Methods
1 Combining Analog Method and Ensemble Data Assimilation: Application to the Lorenz-63 Chaotic System
3(10)
Pierre Tandeo
Pierre Ailliot
Juan Ruiz
Alexis Hannart
Bertrand Chapron
Anne Cuzol
Valerie Monbet
Robert Easton
Ronan Fablet
2 Machine Learning Methods for ENSO Analysis and Prediction
13(10)
Carlos H.R. Lima
Upmanu Lall
Tony Jebara
Anthony G. Barnston
3 Teleconnections in Climate Networks: A Network-of-Networks Approach to Investigate the Influence of Sea Surface Temperature Variability on Monsoon Systems
23(12)
Aljoscha Rheinwalt
Bedartha Goswami
Niklas Boers
Jobst Heitzig
Norbert Marwan
R. Krishnan
Jurgen Kurths
4 Comparison of Linear and Tobit Modeling of Downscaled Daily Precipitation over the Missouri River Basin Using MIROC5
35(16)
Sai K. Popuri
Nagaraj K. Neerchal
Amita Mehta
5 Unsupervised Method for Water Surface Extent Monitoring Using Remote Sensing Data
51(10)
Xi C. Chen
Ankush Khandelwal
Sichao Shi
James H. Faghmous
Shyam Boriah
Vipin Kumar
Part II Statistical Methods
6 A Bayesian Multivariate Nonhomogeneous Markov Model
61(10)
Arthur M. Greene
Tracy Holsclaw
Andrew W. Robertson
Padhraic Smyth
7 Extracting the Climatology of Thunderstorms
71(10)
Valliappa Lakshmanan
Darrel Kingfield
8 Predicting Crop Yield via Partial Linear Model with Bootstrap
81(10)
Megan Heyman
Snigdhansu Chatterjee
9 A New Distribution Mapping Technique for Climate Model Bias Correction
91(10)
Seth McGinnis
Doug Nychka
Linda O. Mearns
10 Evaluation of Global Climate Models Based on Global Impacts of ENSO
101(12)
Saurabh Agrawal
Trent Rehberger
Stefan Liess
Gowtham Atluri
Vipin Kumar
Part III Discovery of Climate Processes
11 Using Causal Discovery Algorithms to Learn About Our Planet's Climate
113(14)
Imme Ebert-Uphoff
Yi Deng
12 SCI-WMS: Python-Based Web Mapping Service for Visualizing Geospatial Data
127(10)
Brandon A. Mayer
Brian McKenna
Alexander Crosby
Kelly Knee
13 Multilevel Random Slope Approach and Nonparametric Inference for River Temperature, Under Haphazard Sampling
137(10)
Vyacheslav Lyubchich
Brian R. Gray
Yulia R. Gel
14 Kernel and Information-Theoretic Methods for the Extraction and Predictability of Organized Tropical Convection
147(16)
Eniko Szekely
Dimitrios Giannakis
Andrew J. Majda
Part IV Analysis of Climate Records
15 A Complex Network Approach to Investigate the Spatiotemporal Co-variability of Extreme Rainfall
163(12)
Niklas Boers
Aljoscha Rheinwalt
Bodo Bookhagen
Norbert Marwan
Jurgen Kurths
16 Evaluating the Impact of Climate Change on Dynamics of House Insurance Claims
175(10)
Marwah Soliman
Vyacheslav Lyubchich
Yulia R. Gel
Danna Naser
Sylvia Esterby
17 Change Detection in Climate Time Series Based on Bounded-Variation Clustering
185(10)
Mohammad Gorji Sefidmazgi
Mina Moradi Kordmahalleh
Abdollah Homaifar
Stefan Liess
18 Developing an Event Database for Cutoff Low Climatology over Southwestern North America
195(12)
Jeremy Weiss
Michael Crimmins
Jonathan Overpeck
Part V Classification of Climate Features
19 Detecting Extreme Events from Climate Time Series via Topic Modeling
207(10)
Cheng Tang
Claire Monteleoni
20 Identifying Developing Cloud Clusters Using Predictive Features
217(10)
Chaunte W. Lacewell
Abdollah Homaifar
21 Comparison of the Main Features of the Zonally Averaged Surface Air Temperature as Represented by Reanalysis and AR4 Models
227(12)
Inigo Errasti
Agustin Ezcurra
Jon Saenz
Gabriel Ibarra-Berastegi
Eduardo Zorita
22 Investigation of Precipitation Thresholds in the Indian Monsoon Using Logit-Normal Mixed Models
239(8)
Lindsey R. Dietz
Snigdhansu Chatterjee
Index 247