Muutke küpsiste eelistusi

E-raamat: Machine Learning and Data Mining in Pattern Recognition: 13th International Conference, MLDM 2017, New York, NY, USA, July 15-20, 2017, Proceedings

Edited by
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 13th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2017, held in New York, NY, USA in July/August 2017.
The 31 full papers presented in this book were carefully reviewed and selected from 150 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as image mining, text mining, video mining, and Web mining.
An Information Retrieval Approach for Finding Dependent Subspaces of Multiple Views
1(16)
Ziyuan Lin
Jaakko Peltonen
Predicting Target Events in Industrial Domains
17(15)
Julio Borges
Martin A. Neumann
Christian Bauer
Yang Ding
Till Riedel
Michael Beigl
Importance of Recommendation Policy Space in Addressing Click Sparsity in Personalized Advertisement Display
32(15)
Sougata Chaudhuri
Georgios Theocharous
Mohammad Ghavamzadeh
Global Flow and Temporal-Shape Descriptors for Human Action Recognition from 3D Reconstruction Data
47(16)
Georgios Th. Papadopoulos
Petros Daras
Reverse Engineering Gene Regulatory Networks Using Sampling and Boosting Techniques
63(15)
Turki Turki
Jason T.L. Wang
Detecting Large Concept Extensions for Conceptual Analysis
78(13)
Louis Chartrand
Jackie C.K. Cheung
Mohamed Bouguessa
Qualitative and Descriptive Topic Extraction from Movie Reviews Using LDA
91(16)
Christophe Dupuy
Francis Bach
Christophe Diot
Towards an Efficient Method of Modeling "Next Best Action" for Digital Buyer's Journey in B2B
107(10)
Anit Bhandari
Kiran Rama
Nandini Seth
Nishant Niranjan
Parag Chitalia
Stig Berg
Detecting Relative Anomaly
117(15)
Richard Neuberg
Yixin Shi
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
132(15)
Alexandras Nathan
Diego Klabjan
CCPM: A Scalable and Noise-Resistant Closed Contiguous Sequential Patterns Mining Algorithm
147(16)
Yacine Abboud
Anne Boyer
Armelle Brun
Sparse Dynamic Time Warping
163(13)
Youngha Hwang
Saul B. Gelfand
Improving a Bayesian Decision Model for Supporting Diagnosis f Alzheimer's Disease and Related Disorders
176(16)
Carolina Medeiros Carvalho
Flavio Luiz Seixas
Aura Conci
Debora Christina Muchaluat-Saade
Jerson Laks
Over-Fitting in Model Selection with Gaussian Process Regression
192(14)
Rekar O. Mohammed
Gavin C. Cawley
Machine Learning-as-a-Service and Its Application to Medical Informatics
206(14)
Ahmad P. Tafti
Eric LaRose
Jonathan C. Badger
Ross Kleiman
Peggy Peissig
Anomaly Detection from Kepler Satellite Time-Series Data
220(13)
Nathaniel Grabaskas
Dong Si
Prediction of Insurance Claim Severity Loss Using Regression Models
233(15)
Ruth M. Ogunnaike
Dong Si
A Spectral Clustering Method for Large-Scale Geostatistical Datasets
248(14)
Francky Fouedjio
Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks
262(14)
Vahid Behzadan
Arslan Munir
Mobile Robot Localization via Machine Learning
276(15)
Alexander Kuleshov
Alexander Bernstein
Evgeny Burnaev
An Analysis of the Application of Simplified Silhouette to the Evaluation of k-means Clustering Validity
291(15)
Fei Wang
Hector-Hugo Franco-Penya
John D. Kelleher
John Pugh
Robert Ross
Summarization-Guided Greedy Optimization of Machine Learning Model
306(16)
Dymitr Ruta
Ling Cen
Ernesto Damiani
Clustering Aided Support Vector Machines
322(13)
Goce Ristanoski
Rahul Soni
Sutharshan Rajasegarar
James Bailey
Christopher Leckie
Mining Player Ranking Dynamics in Team Sports
335(10)
Paul Fomenky
Alfred Noel
Dan A. Simovici
IVHD: A Robust Linear-Time and Memory Efficient Method for Visual Exploratory Data Analysis
345(16)
Witold Dzwine
Rafal Wcislo
Personalized Visualization Based upon Wavelet Transform for Interactive Software Customization
361(15)
Xiaobu Yuan
Manpreet Kaler
Vijaya Mulpuri
Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity Using Convolutional Neural Networks
376(15)
Joseph Antony
Kevin McGuinness
Kieran Moran
Noel E. O'Connor
High Accuracy Predictive Modelling for Customer Churn Prediction in Telecom Industry
391(12)
R. Prashanth
K. Deepak
Amit Kumar Meher
You Are What You Tweet: A New Hybrid Model for Sentiment Analysis
403(14)
Arthur Huang
David Ebert
Parker Rider
Mining Frequent Closed Set Distinguishing One Dataset from Another from a Viewpoint of Structural Index
417(14)
Yoshiaki Okubo
Makoto Haraguchi
Methods of Hyperparameter Estimation in Time-Varying Regression Models with Application to Dynamic Style Analysis of Investment Portfolios
431(20)
Olga Krasotkina
Vadim Mottl
Michael Markov
Elena Chemousova
Dmitry Malakhov
Author Index 451