Muutke küpsiste eelistusi

E-raamat: Machine Learning and Data Mining in Pattern Recognition: 6th International Conference, MLDM 2009, Leipzig, Germany, July 23-25, 2009, Proceedings

Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year"s MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical to

pics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.
Attribute Discretization and Data Preparation.- Improved
Comprehensibility and Reliability of Explanations via Restricted Halfspace
Discretization.- Selection of Subsets of Ordered Features in Machine
Learning.- Combination of Vector Quantization and Visualization.-
Discretization of Target Attributes for Subgroup Discovery.- Preserving
Privacy in Time Series Data Classification by Discretization.- Using
Resampling Techniques for Better Quality Discretization.- Classification.- A
Large Margin Classifier with Additional Features.- Sequential EM for
Unsupervised Adaptive Gaussian Mixture Model Based Classifier.- Optimal
Double-Kernel Combination for Classification.- Efficient AdaBoost Region
Classification.- A Linear Classification Method in a Very High Dimensional
Space Using Distributed Representation.- PMCRI: A Parallel Modular
Classification Rule Induction Framework.- Dynamic Score Combination: A
Supervised and Unsupervised Score Combination Method.- ODDboost:
Incorporating Posterior Estimates into AdaBoost.- Ensemble Classifier
Learning.- Ensemble Learning: A Study on Different Variants of the Dynamic
Selection Approach.- Relevance and Redundancy Analysis for Ensemble
Classifiers.- Drift-Aware Ensemble Regression.- Concept Drifting Detection on
Noisy Streaming Data in Random Ensemble Decision Trees.- Association Rules
and Pattern Mining.- Mining Multiple Level Non-redundant Association Rules
through Two-Fold Pruning of Redundancies.- Pattern Mining with Natural
Language Processing: An Exploratory Approach.- Is the Distance Compression
Effect Overstated? Some Theory and Experimentation.- Support Vector
Machines.- Fast Local Support Vector Machines for Large Datasets.- The Effect
of Domain Knowledge on Rule Extraction from Support Vector Machines.- Towards
B-Coloring of SOM.- Clustering.- CSBIterKmeans: A New Clustering Algorithm
Based on Quantitative Assessment of the Clustering Quality.- Agent-Based
Non-distributed and Distributed Clustering.- An Evidence Accumulation
Approach to Constrained Clustering Combination.- Fast Spectral Clustering
with Random Projection and Sampling.- How Much True Structure Has Been
Discovered?.- Efficient Clustering of Web-Derived Data Sets.- A Probabilistic
Approach for Constrained Clustering with Topological Map.- Novelty and
Outlier Detection.- Relational Frequent Patterns Mining for Novelty Detection
from Data Streams.- A Comparative Study of Outlier Detection Algorithms.-
Outlier Detection with Explanation Facility.- Learning.- Concept Learning
from (Very) Ambiguous Examples.- Finding Top-N Pseudo Formal Concepts with
Core Intents.- On Fixed Convex Combinations of No-Regret Learners.- An
Improved Tabu Search (ITS) Algorithm Based on Open Cover Theory for Global
Extremums.- The Needles-in-Haystack Problem.- Data Mining on Multimedia
Data.- An Evidence-Driven Probabilistic Inference Framework for Semantic
Image Understanding.- Detection of Masses in Mammographic Images Using
Simpsons Diversity Index in Circular Regions and SVM.- Mining Lung Shape
from X-Ray Images.- A Wavelet-Based Method for Detecting Seismic Anomalies in
Remote Sensing Satellite Data.- Spectrum Steganalysis of WAV Audio Streams.-
Audio-Based Emotion Recognition in Judicial Domain: A Multilayer Support
Vector Machines Approach.- Learning with a Quadruped Chopstick Robot.-
Dissimilarity Based Vector Space Embedding of Graphs Using Prototype
Reduction Schemes.- Text Mining.- Using Graph-Kernels to Represent Semantic
Information in Text Classification.- A General Framework of Feature Selection
for Text Categorization.- New SemanticSimilarity Based Model for Text
Clustering Using Extended Gloss Overlaps.- Aspects of Data Mining.- Learning
Betting Tips from Users Bet Selections.- An Approach to Web-Scale
Named-Entity Disambiguation.- A General Learning Method for Automatic
Title Extraction from HTML Pages.- Regional Pattern Discovery in
Geo-referenced Datasets Using PCA.- Memory-Based Modeling of Seasonality for
Prediction of Climatic Time Series.- A Neural Approach for SMEs Credit Risk
Analysis in Turkey.- Assisting Data Mining through Automated Planning.-
Predictions with Confidence in Applications.- Data Mining in Medicine.-
Aligning Bayesian Network Classifiers with Medical Contexts.- Assessing the
Eligibility of Kidney Transplant Donors.- Lung Nodules Classification in CT
Images Using Simpsons Index, Geometrical Measures and One-Class SVM.