Muutke küpsiste eelistusi

E-raamat: Machine Learning Evaluation: Towards Reliable and Responsible AI

(American University, Washington DC), (American University, Washington DC)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Nov-2024
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009008549
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Nov-2024
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009008549

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As machine learning applications gain widespread adoption and integration in a variety of applications, including safety and mission-critical systems, the need for robust evaluation methods grows more urgent. This book compiles scattered information on the topic from research papers and blogs to provide a centralized resource that is accessible to students, practitioners, and researchers across the sciences. The book examines meaningful metrics for diverse types of learning paradigms and applications, unbiased estimation methods, rigorous statistical analysis, fair training sets, and meaningful explainability, all of which are essential to building robust and reliable machine learning products. In addition to standard classification, the book discusses unsupervised learning, regression, image segmentation, and anomaly detection. The book also covers topics such as industry-strength evaluation, fairness, and responsible AI. Implementations using Python and scikit-learn are available on the book's website.

This accessible, comprehensive guide is aimed at students, practitioners, engineers, and users. The emphasis is on building robust, responsible machine learning products incorporating meaningful metrics, rigorous statistical analysis, fair training sets, and explainability. Implementations in Python and sklearn are available on the book's website.

Arvustused

'By its nature, machine learning has always had evaluation at its heart. As the authors of this timely and important book note, the importance of doing evaluation properly is only increasing as we enter the age of machine learning deployment. The book showcases Japkowicz' and Boukouvalas' encyclopaedic knowledge of the subject as well as their accessible and lucid writing style. Quite simply required reading for machine learning researchers and professionals.' Peter Flach, University of Bristol

Muu info

A practical guide to robust performance evaluation methods machine learning models for modern industrial-strength applications.
Part I. Preliminary Considerations:
1. Introduction;
2. Statistics overview;
3. Machine learning preliminaries;
4. Traditional machine learning evaluation; Part II. Evaluation for Classification:
5. Metrics;
6. Re-sampling;
7. Statistical analysis; Part III. Evaluation for Other Settings:
8. Supervised settings other than simple classification;
9. Unsupervised learning; Part IV. Evaluation from a Practical Perspective:
10. Industrial-strength evaluation;
11. Responsible machine learning;
12. Conclusion; Appendices: A. Statistical tables; B. Advanced topics in classification metrics; References; Index.
Nathalie Japkowicz is Professor and Chair of the Department of Computer Science at American University, Washington DC. She previously taught at the University of Ottawa. Her current research focuses on lifelong anomaly detection and hate speech detection. In the past, she researched one-class learning and the class imbalance problem extensively. She has received numerous awards, including Test of Time and Distinguished Service awards. Zois Boukouvalas is Assistant Professor in the Department of Mathematics and Statistics at American University, Washington DC. His research focuses on the development of interpretable multi-modal machine learning algorithms, and he has been the lead principal investigator of several research grants. Through his research and teaching activities, he is creating environments that encourage and support the success of underrepresented students for entry into machine learning careers.