Muutke küpsiste eelistusi

E-raamat: Machine Learning and the Internet of Things in Education: Models and Applications

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is designed to provide rich research hub for researchers, teachers, and students to ease research hassle/challenges. The book is rich and comprehensive enough to provide answers to frequently asked research questions because the content of the book touches several disciplines cutting across computing, engineering, medicine, education, and sciences in general. The rich multidisciplinary contents of the book promise to leave all users satisfied. The valuable features in the book include but not limited to: demonstration of mathematical expressions for implementation of machine learning models, integration of learning techniques, and projection of future AI and IoT technologies. These technologies will enable systems to be simulative, predictive, and self-operating smart systems. The primary audience of the book include but not limited to researchers, teachers, and postgraduate and undergraduate students in computing, engineering, medicine, education, and science fields.

Introduction to Machine Learning and IoT.- Deep Convolutional Network for Food Image Identification.- Face Mask Recognition System-Based Convolutional Neural Network.- Fuzzy Inference System Based-AI for Diagnosis of Esophageal Cancer.- Skin Detection System Based Fuzzy Neural Networks for Skin Identification.- Machine Learning Based Cardless ATM Using Voice Recognition Techniques.- Intelligent Systems for Automated Classification of Cardiac Arrhythmias.- A Fuzzy Logic Implemented Classification Indicator for the Diagnosis of Diabetes Mellitus in TRNC.- Implementation and Evaluation of a Mobile Smart School Management System NEUKinderApp.- The Emerging Benefits of Gamification Techniques.- A Comprehensive Review of Virtual E-Learning System Challenges.- A Semantic Portal to Improve Search on Rivers State's Independent National Electoral Commission.- Implementation of Semantic Web Service and Integration of e-Government Based Linked Data.- Application of Zero-Trust Networks in e-Health Internet of Things (IoT) Deployments.- IoT Security Based Vulnerability Assessment of e-Learning Systems.- Blockchain technology, artificial intelligence, and big data in education.- Sustainable Education Systems with IoT Paradigms.- Post Covid Era - Smart Class Environment.