Muutke küpsiste eelistusi

E-raamat: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. 

The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. 
They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. 
rain MR Image Segmentation in Small Dataset with Adversarial Defense and
Task Reorganization.- Spatial Regularized Classification Network for Spinal
Dislocation Diagnosis.- Globally-Aware Multiple Instance Classifier for
Breast Cancer Screening.- Advancing Pancreas Segmentation in Multi-protocol
MRI Volumes using Hausdorff-Sine Loss Function.- WSI-Net: Branch-based and
Hierarchy-aware Network for Segmentation and Classification of Breast
Histopathological Whole-slide Images.- Lesion Detection with Deep Aggregated
3D Contextual Feature and Auxiliary Information.- MSAFusionNet: Multiple
Subspace Attention Based Deep Multi-modal Fusion Network.- DCCL: A Benchmark
for Cervical Cytology Analysis.- Smartphone-Supported Malaria Diagnosis Based
on Deep Learning.- Children's Neuroblastoma Segmentation using Morphological
Features.- GFD Faster R-CNN: Gabor Fractal DenseNet Faster R-CNN for
automatic detection of esophageal abnormalities in endoscopic images.- Deep
Active Lesion Segmentation.- Infant Brain Deformable Registration Using
Global and Local Label-Driven Deep Regression Learning.- A Relation Hashing
Network Embedded with Prior Features for Skin Lesion Classification.-
End-to-End Adversarial Shape Learning for Abdomen Organ Deep Segmentation.-
Privacy-preserving Federated Brain Tumour Segmentation.- Residual Attention
Generative Adversarial Networks for Nuclei Detection on Routine Colon Cancer
Histology Images.- Semi-Supervised Multi-Task Learning With Chest X-Ray
Images.- Novel Bi-directional Images Synthesis based on WGAN-GP with
GMM-based Noise Generation.- Pseudo-labeled bootstrapping and multi-stage
transfer learning for the classification and localization of dysplasia in
Barretts Esophagus.- Anatomy-Aware Self-supervised Fetal MRI Synthesis from
Unpaired Ultrasound Images.- Boundary Aware Networks for Medical Image
Segmentation.- Automatic Rodent Brain MRI Lesion Segmentation with Fully
Convolutional Networks.- Morphological Simplification of Brain MR Images by
Deep Learning for Facilitating Deformable Registration.- Joint Shape
Representation and Classification for Detecting PDAC.- FusionNet:
Incorporating Shape and Texture for Abnormality Detection in 3D Abdominal CT
Scans.- Weakly supervised segmentation by a deep geodesic prior.- Ultrasound
Liver Fibrosis Diagnosis using Multi-indicator guided Deep Neural Networks.-
Correspondence-Steered Volumetric Descriptor Learning Using Deep Functional
Maps.- Sturm: Sparse Tubal-Regularized Multilinear Regression for fMRI.-
Improving Whole-Brain Neural Decoding of fMRI with Domain Adaptation.-
Automatic Couinaud Segmentation from CT Volumes on Liver Using GLC-Unet.-
Biomedical Image Segmentation by Retina-like Sequential Attention Mechanism
Using Only A Few Training Images.- Conv-MCD: A Plug-and-Play Multi-task
Module for Medical Image Segmentation.- Detecting abnormalities in
resting-state dynamics: An unsupervised learning approach.- Distanced LSTM:
Time-Distanced Gates in Long Short-Term MemoryModels for Lung Cancer
Detection.- Dense-residual Attention Network for Skin Lesion Segmentation.-
Confounder-Aware Visualization of ConvNets.- Detecting Lesion Bounding
Ellipses With Gaussian Proposal Networks.- Modelling Airway Geometry as Stock
Market Data using Bayesian Changepoint Detection.- Unsupervised Lesion
Detection with Locally Gaussian Approximation.- A Hybrid Multi-atrous and
Multi-scale Network for Liver Lesion Detection.- BOLD fMRI-based Brain
Perfusion Prediction Using Deep Dilated Wide Activation Networks.- Jointly
Discriminative and Generative Recurrent Neural Networks for Learning from
fMRI.- Unsupervised Conditional Consensus Adversarial Network for Brain
Disease Identification with Structural MRI.- A Maximum Entropy Deep
Reinforcement Learning Neural Tracker.- Weakly Supervised Confidence Learning
for Brain MR Image Dense Parcellation.- Select, Attend, and Transfer: Light,
Learnable Skip Connections.- Learning-based Bone Quality Classification
Method for Spinal Metastasis.- Automated Segmentation of Skin Lesion Based on
Pyramid Attention Network.- Relu cascade of feature pyramid networks for CT
pulmonary nodule detection.- Joint Localization of Optic Disc and Fovea in
Ultra-Widefield Fundus Images.- Multi-Scale Attentional Network for
Multi-Focal Segmentation of Active Bleed after Pelvic Fractures.- Lesion
Detection by Efficiently Bridging 3D Context.- Communal Domain Learning for
Registration in Drifted Image Spaces.- Conv2Warp: An unsupervised deformable
image registration with continuous convolution and warping.- Semantic
filtering through deep source separation on microscopy images.- Adaptive
Functional Connectivity Network using Parallel Hierarchical BiLSTM for MCI
Diagnosis.- Multi-Template based Auto-weighted Adaptive Structural Learning
for ASD Diagnosis.- Learn to Step-wise Focus on Targets for Biomedical Image
Segmentation.- Renal Cell Carcinoma Staging with Learnable Image
Histogram-based Deep Neural Network.- Weakly Supervised Learning Strategy for
Lung Defect Segmentation.- Gated Recurrent Neural Networks for Accelerated 
Ventilation MRI.- A Cascaded Multi-Modality Analysis in Mild Cognitive
Impairment.- Deep Residual Learning for Instrument Segmentation in Robotic
Surgery.- Deep learning model integrating dilated convolution and deep
supervision for brain tumor segmentation in multi-parametric MRI.- A joint 3D
UNet-Graph Neural Network-based method for Airway Segmentation from chest
CTs.- Automatic Fetal Brain Extraction Using Multi-Stage U-Net with Deep
Supervision.- Cross-Modal Attention-Guided Convolutional Network for
Multi-Modal Cardiac Segmentation.- High- and Low-Level Feature Enhancement
for Medical Image Segmentation.- Shape-Aware Complementary-Task Learning for
Multi-Organ Segmentation.- An Active Learning Approach for Reducing
Annotation Cost in Skin Lesion Analysis.- Tree-LSTM: Using LSTM to Encode
Memory in Anatomical Tree Prediction from 3D Images.- FAIM-A ConvNet Method
for Unsupervised 3D Medical Image Registration.- Functional data and long
short-term memory networks for diagnosis of Parkinson's Disease.- Joint
Holographic Detection and Reconstruction.- Reinforced Transformer for Medical
Image Captioning.- Multi Task Convolutional Neural Network for Joint Bone Age
Assessment and Ossification Center Detection from Hand Radiograph.