Muutke küpsiste eelistusi

E-raamat: Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling

Edited by (Faculty of Chemistry, University of Tehran, Tehran, Iran)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Oct-2022
  • Kirjastus: Elsevier - Health Sciences Division
  • Keel: eng
  • ISBN-13: 9780323907064
  • Formaat - EPUB+DRM
  • Hind: 211,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Oct-2022
  • Kirjastus: Elsevier - Health Sciences Division
  • Keel: eng
  • ISBN-13: 9780323907064

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling outlines key knowledge in this area, combining critical introductory approaches with the latest advanced techniques. Beginning with an introduction of univariate and multivariate statistical analysis, the book then explores multivariate calibration and validation methods. Soft modeling in chemical data analysis, hyperspectral data analysis, and autoencoder applications in analytical chemistry are then discussed, providing useful examples of the techniques in chemistry applications.

Drawing on the knowledge of a global team of researchers, this book will be a helpful guide for chemists interested in developing their skills in multivariate data and error analysis.

  • Provides an introductory overview of statistical methods for the analysis and interpretation of chemical data
  • Discusses the use of machine learning for recognizing patterns in multidimensional chemical data
  • Identifies common sources of multivariate errors

1. Statistical Methods in Chemical Data Analysis
2. Multivariate Predictive Modeling and Validation
3. Multivariate Pattern Recognition by Machine Learning Methods
4. Tuning the Apparent Thermodynamic Parameters of Chemical Systems
5. The Analytical/Measurement Sources of Multivariate Errors
6. Autoencoders in Analytical Chemistry
7. Uniqueness in Resolving Multivariate Chemical Data

Appendix
1. Introduction to Python

Dr. Jahan B Ghasemi received his PhD from Shiraz University. He was a visiting Scientist at the University of Chalmers in 2001 and Delaware University in 2006. His current research interests are focused on chemometrics and data analysis and computational drug design. He is the author of more than 200 papers and 4 chapter books in international journals and books.