Muutke küpsiste eelistusi

E-raamat: Machine Learning Systems: Designs that scale

  • Formaat: 224 pages
  • Ilmumisaeg: 21-May-2018
  • Kirjastus: Manning Publications
  • Keel: eng
  • ISBN-13: 9781638355366
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 41,07 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 224 pages
  • Ilmumisaeg: 21-May-2018
  • Kirjastus: Manning Publications
  • Keel: eng
  • ISBN-13: 9781638355366
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Machine learning applications autonomously reason about data at massive scale. Its important that they remain responsive in the face of failure and changes in load. But machine learning systems are different than other applications when it comes to testing, building, deploying, and monitoring.

 

Reactive Machine Learning Systems teaches readers how to implement reactive design solutions in their machine learning systems to make them as reliable as a well-built web app. Using Scala and powerful frameworks such as Spark, MLlib, and Akka, theyll learn to quickly and reliably move from a single machine to a massive cluster.

 

Key Features:

·    Example-rich guide

·    Step-by-step guide

·    Move from single-machine to massive cluster

 

Readers should have intermediate skills in Java or Scala. No previous machine learning experience is required.

 

About the Technology:

Machine learning systems are different than other applications when it comes to testing, building, deploying, and monitoring. To make machine learning systems reactive, you need to understand both reactive design patterns and modern data architecture patterns.
Foreword ix
Preface xii
Acknowledgments xv
About This Book xvii
About the Author xxi
About the Cover Illustration xxii
PART 1 FUNDAMENTALS OF REACTIVE MACHINE LEARNING
1(40)
1 Learning reactive machine learning
3(20)
1.1 An example machine learning system
4(3)
Building a prototype system
4(3)
Building a better system
7(1)
1.2 Reactive machine learning
7(16)
Machine learning
8(3)
Reactive systems
11(5)
Making machine-learning systems reactive
16(4)
When not to use reactive machine learning
20(3)
2 Using reactive tools
23(18)
2.1 Scala, a reactive language
24(5)
Reacting to uncertainty in Scala
25(1)
The uncertainty of time
26(3)
2.2 Akka, a reactive toolkit
29(5)
The actor model
29(2)
Ensuring resilience with Akka
31(3)
2.3 Spark, a reactive big data framework
34(7)
PART 2 BUILDING A REACTIVE MACHINE LEARNING SYSTEM
41(124)
3 Collecting data
43(26)
3.1 Sensing uncertain data
44(4)
3.2 Collecting data at scale
48(5)
Maintaining state in a distributed system
48(4)
Understanding data collection
52(1)
3.3 Persisting data
53(13)
Elastic and resilient databases
54(1)
Fact databases
55(2)
Querying persisted facts
57(5)
Understanding distributed-fact databases
62(4)
3.4 Applications
66(1)
3.5 Reactivities
67(2)
4 Generating features
69(24)
4.1 Spark ML
71(1)
4.2 Extracting features
71(3)
4.3 Transforming features
74(6)
Common feature transforms
76(3)
Transforming concepts
79(1)
4.4 Selecting features
80(2)
4.5 Structuring feature code
82(8)
Feature generators
82(4)
Feature set composition
86(4)
4.6 Applications
90(1)
4.7 Reactivities
90(3)
5 Learning models
93(24)
5.1 Implementing learning algorithms
94(8)
Bayesian modeling
96(2)
Implementing Naive Bayes
98(4)
5.2 Using MLlib
102(7)
Building an ML pipeline
102(5)
Evolving modeling techniques
107(2)
5.3 Building facades
109(6)
Learning artistic style
110(5)
5.4 Reactivities
115(2)
6 Evaluating models
117(18)
6.1 Detecting fraud
118(1)
6.2 Holding out data
119(3)
6.3 Model metrics
122(5)
6.4 Testing models
127(2)
6.5 Data leakage
129(1)
6.6 Recording provenance
130(2)
6.7 Reactivities
132(3)
7 Publishing models
135(14)
7.1 The uncertainty of farming
136(1)
7.2 Persisting models
136(5)
7.3 Serving models
141(3)
Microservices
141(1)
Akka HTTP
142(2)
7.4 Containerizing applications
144(3)
7.5 Reactivities
147(2)
8 Responding
149(16)
8.1 Moving at the speed of turtles
150(1)
8.2 Building services with tasks
150(3)
8.3 Predicting traffic
153(4)
8.4 Handling failure
157(3)
8.5 Architecting response systems
160(2)
8.6 Reactivities
162(3)
PART 3 OPERATING A MACHINE LEARNING SYSTEM
165(30)
9 Delivering
167(10)
9.1 Shipping fruit
168(1)
9.2 Building and packaging
169(1)
9.3 Build pipelines
170(1)
9.4 Evaluating models
171(1)
9.5 Deploying
172(3)
9.6 Reactivities
175(2)
10 Evolving intelligence
177(18)
10.1 Chatting
177(1)
10.2 Artificial intelligence
178(1)
10.3 Reflex agents
178(2)
10.4 Intelligent agents
180(1)
10.5 Learning agents
181(4)
10.6 Reactive learning agents
185(1)
Reactive principles
185(1)
Reactive strategies
186(1)
Reactive machine learning
186(1)
10.7 Reactivities
186(4)
Libraries
187(1)
System data
188(2)
10.8 Reactive explorations
190(5)
Users
190(1)
System dimensions
191(1)
Applying reactive principles
192(3)
Appendix Getting set up 195(2)
Index 197