Muutke küpsiste eelistusi

E-raamat: Machine Models of Music

Edited by (Rice University), Edited by
  • Formaat: 556 pages
  • Sari: Machine Models of Music
  • Ilmumisaeg: 08-Jan-1993
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262290982
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 166,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Machine Models of Music
  • Formaat: 556 pages
  • Sari: Machine Models of Music
  • Ilmumisaeg: 08-Jan-1993
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262290982
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Machine Models of Music brings together representative models ranging from Mozart's "Musical Dice Game" to a classic article by Marvin Minsky and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music, and to demonstrate the ways in which music can push the boundaries of traditional AI research.
Major sections of the book take up pioneering research in generate-and-test composition (Lejaren Hiller, Frederick Brooks, Jr., Stanley Gill); composition parsing (Allen Forte, Herbert Simon, Terry Winograd); heuristic composition (John Rothgeb, James Moorer, Stephen Smoliar); generative grammars (Otto Laske, Gary Rader, Johan Sundberg, Fred Lerdahl); alternative theories (Marvin Minsky, James Meehan); composition tools (Charles Ames, Kemal Ebcioglu, David Cope, Christopher Fry); and new directions (David Levitt, Christopher Longuet-Higgins, Jamshed Bharucha, Stephan Schwanauer).

Machine Models of Music brings together representative models and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music and to demonstrate the ways in which music can push the boundaries of traditional Al research.

Machine Models of Music brings together representative models ranging from Mozart's "Musical Dice Game" to a classic article by Marvin Minsky and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music and to demonstrate the ways in which music can push the boundaries of traditional Al research.Major sections of the book take up pioneering research in generate-and-test composition (Lejaren Hiller, Barry Brooks, Jr., Stanley Gill); composition parsing (Allen Forte, Herbert Simon, Terry Winograd); heuristic composition (John Rothgeb, James Moorer, Steven Smoliar); generative grammars (Otto Laske, Gary Rader, Johan Sundberg, Fred Lerdahl); alternative theories (Marvin Minsky, James Meehan); composition tools (Charles Ames, Kemal Ebcioglu, David Cope, C. Fry); and new directions (David Levitt, Christopher Longuet-Higgins, Jamshed Bharucha, Stephan Schwanauer).Stephan Schwanauer is President of Mediasoft Corporation. David Levitt is the founder of HIP Software and head of audio products at VPL Research.



Machine Models of Music brings together representative models and current research toillustrate the rich impact that artificial intelligence has had on the understanding and compositionof traditional music and to demonstrate the ways in which music can push the boundaries oftraditional Al research.